РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ МАТЕМАТИКИ им. С. Л. СОБОЛЕВА

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СОБОЛЕВСКИЕ ЧТЕНИЯ

Международная школа-конференция, посвященная 110-летию со дня рождения С.Л. Соболева

Новосибирск, Россия, 10-16 декабря 2018 г.

ТЕЗИСЫ ДОКЛАДОВ

НОВОСИБИРСК 2018 УДК 517 ББК В16 С545

С545 Соболевские чтения. Международная школа-конференция, посвященная 110-летию со дня рождения С. Л. Соболева (Новосибирск, 10–16 декабря 2018 г.): Тез. докладов / Под ред. Г. В. Демиденко. — Новосибирск: Изд-во Института математики, 2018. — 248 с.

ISBN 978-5-86134-222-3

В сборнике представлены тезисы докладов на Международной школе-конференции "Соболевские чтения", посвященной 110-летию со дня рождения С.Л. Соболева. Тематики докладов охватывают следующие направления: уравнения с частными производными, уравнения математической физики, обыкновенные дифференциальные уравнения, уравнения с запаздывающим аргументом, теория операторов, спектральная теория, функциональные пространства, теоремы вложения, теория приближений, кубатурные формулы.

УДК 517 ББК В16

Организаторы

Институт математики им. С. Л. Соболева СО РАН Новосибирский государственный университет

Ответственный редактор: Г.В. Демиденко

Organizers

Sobolev Institute of Mathematics SB RAS Novosibirsk State University

Editor-in-Chief: G.V. Demidenko

$$ext{C} \ \frac{1602070100-02}{\Re 82(03)-2018} \ ext{Без объявл.}$$

© Институт математики им. С. Л. Соболева СО РАН, 2018

РАВНОМЕРНАЯ ГЛОБАЛЬНАЯ КВАЗИДОСТИЖИМОСТЬ ЛИНЕЙНЫХ СИСТЕМ

Козлов А. А.

Полоцкий государственный университет, Новополоцк, Республика Беларусь; kozlovaa@tut.by

Рассмотрим линейную нестационарную управляемую систему

$$\dot{x} = A(t)x + B(t)u, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m, \quad t \geqslant 0,$$
 (1)

с локально интегрируемыми по Лебегу и интегрально ограниченными матрицами A и B. Выбрав управление u в виде линейной обратной связи u=U(t)x, где U — некоторая измеримая и ограниченная $(m \times n)$ -матрица, получим систему

$$\dot{x} = (A(t) + B(t)U(t))x, \quad x \in \mathbb{R}^n, \quad t \geqslant 0,$$

с локально интегрируемыми и интегрально ограниченными коэффициентами.

Определение 1 [1]. Система (1) обладает свойством равномерной глобальной квазидостижимости, если найдется такое число T>0, при котором для любых $r\geqslant 1$ и $0<\rho\leqslant 1$ существует такая величина $\theta=\theta(r,\rho)>0$, что для всякого $t_0\geqslant 0$ найдется ортогональная $(n\times n)$ -матрица $F=F(t_0,r,\rho)$, при которой для произвольной верхнетреугольной $(n\times n)$ -матрицы H, удовлетворяющей неравенствам $\|H-E\|\leqslant r$ и $\det H\geqslant \rho$, на отрезке $[t_0,t_0+T]$ найдется измеримое и ограниченное $(m\times n)$ -управление U, удовлетворяющее при всех $t\in [t_0,t_0+T]$ оценке $\|U(t)\|\leqslant \theta(r,\rho)$ и гарантирующее для матрицы Коши $X_U(t,s)$ системы (2) выполнение равенства $X_U(t_0+T,t_0)=X(t_0+T,t_0)FHF^{-1}$.

Свойство равномерной глобальной квазидостижимости является [1] действенным инструментом при решении задач глобального управления асимптотическими инвариантами [2] линейной системы (2). В работе [1] было установлено, что в случае n=2 достаточным условием глобальной квазидостижимости системы (2) является равномерная полная управляемость соответствующей системы (1).

Определение 2 [3, 4]. Система (1) называется равномерно вполне управляемой, если существуют такие числа $\sigma > 0$ и $\gamma > 0$, что при любых $t_0 \geqslant 0$ и $x_0 \in \mathbb{R}^n$ найдется измеримое и ограниченное управление $u: [t_0, t_0 + \sigma] \to \mathbb{R}^m$, при всех $t \in [t_0, t_0 + \sigma]$ удовлетворяющее неравенству $||u(t)|| \leqslant \gamma ||x_0||$ и переводящее вектор начального состояния $x(t_0) = x_0$ системы (1) в ноль на этом отрезке.

В настоящей работе дано обобщение вышеуказанного утверждения работы [1]. Теорема. Если линейная нестационарная управляемая система (1) равномерно вполне управляема, то соответствующая ей замкнутая система (2) обладает свойством равномерной глобальной квазидостижимости.

Работа выполнена в рамках Государственной программы научных исследований Республики Беларусь "Конвергенция—2020" (подпрограмма 1, задание 1.2.01).

ЛИТЕРАТУРА

- 1. Козлов А. А., Инц И. В. О глобальной ляпуновской приводимости двумерных линейных систем с локально интегрируемыми коэффициентами // Дифференц, уравнения. 2016. Т. 52, № 6. С. 720–742.
- 2. ${\it Makapos~E.K.}$, ${\it Попова~C.H.}$ Управляемость асимптотических инвариантов нестационарных линейных систем. Минск: Беларус. навука, 2012.
- 3. *Тонков Е. Л.* Критерий равномерной управляемости и стабилизация линейной рекуррентной системы // Дифференц. уравнения. 1979. Т. 15, № 10. С. 1804–1813.
- 4. Kalman R. E. Contribution to the theory of optimal control // Bol. Soc. Mat. Mex., II. Ser. 1960. V. 5, No. 1. P. 102–119.