
MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 154

UDC 004.4'234

THE INSIDE OF HEADLESS CHROME

M. BALABASH, A. OSKIN

Polotsk State University, Belarus

In this paper, we define headless web browsers and how to use them. The main components of the Head-

less Chrome web browser and the interaction protocol are considered.

Introduction. A headless browser is a great tool for automated testing and server environments where

you don't need a visible UI shell. For example, you may want to run some tests against a real web page, create a

PDF of it, or just inspect how the browser renders an URL.

Headless browsers provide automated web page management in an environment with all modern web

platform features. They provide special programming interfaces for interacting with the runtime and allow you

to control the web browser, execute code in its environment and receive any available information from the

context of the web browser.

Chromium is an open browser implementation based on WebKit. Google Chrome is a branded version of

Chromium, which has proprietary codecs, integrations with Google services, etc. Headless Chrome is a headless

version of the Google Chrome browser. And that is we gonna explore.

Blink is a browser engine. Blink is a fork of the WebCore component of WebKit, which was originally a fork

of the KHTML and KJS libraries from KDE. It is used in Chrome starting at version 28, Microsoft Edge starting at

version 79, Opera (15+), Vivaldi, Amazon Silk and other Chromium-based browsers and frameworks.

The Chrome DevTools protocol is used as the management interface (API). Chrome DevTools is a set of

tools for web developers, built directly into the Google Chrome browser.

Chromium Components. The lowest level is a Platform layer.

1. Ozone, the abstract window manager in Chrome, is what the window manager of the operating system

interacts with. On Linux, it is either an X-server or Wayland. On Windows, it is a Windows window manager.

2. Scheduler - the same scheduler that deals with the synchronization of threads and processes, because

Chrome is a multi-process application.

3. Net - a network component that parses HTTP, creates headers, etc.

The Content layer is the largest component Chrome has.

1. Blink - a WebCore-based web engine from WebKit for working with HTML and CSS; V8 (JavaScript en-

gine); API for all extensions we use in Chrome. It also includes the DevTools protocol.

2. The Content API is an interface with which you can very easily use all the features of the web engine.

Since there are a lot of things inside Blink (several hundred thousand interfaces), in order not to get lost in all

these methods and functions, you need a Content API.

Headless layer level.

1. Headless library.

2. Embedder API interface for embedding Headless library in the application.

3. Client API is an interface that Puppeteer uses.

Application Layer

1. Your application (Embedding app).

2. Gadgets, for example, Headless shell.

Chrome DevTools protocol. All front-end developers (and not only they) came across the Chrome Dev-

Tools protocol, because they used the Chrome developer panel or the remote debugger, or Chrome develop-

ment tools. If you run the developer tools remotely, communication with the browser occurs using the DevTools

protocol. When you install debugger, see code coverage, use geolocation or something else - all this is controlled

using DevTools.

The protocol has 2 components:

1. DevTools target - the tab that you inspect.

2. DevTools client - for example, this is a developer panel that is launched remotely.

They communicate using simple JSON:

1. There is an identifier for the command, the name of the method to be executed, and some parame-

ters.

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 155

2. The answer also looks very simple: an identifier that is needed because all the commands that are exe-

cuted using the protocol are asynchronous. In order for us to always be able to compare which response to

which team we received, we need an identifier.

3. Result.

Puppeteer. This is a library developed by the Chrome team (available for several programming languages)

that provides a high-level API for controlling Chrome or Chromium using the DevTools protocol.

It provides a high-level API to control headless (or full) Chrome. And hides away the complexities of the

DevTools protocol and takes care of redundant tasks like launching a debug instance of Chrome. It's similar to

other automated testing libraries like Phantom and NightmareJS, but it only works with the latest versions of

Chrome.

Among other things, Puppeteer can be used to easily take screenshots, create PDFs, navigate pages, and

fetch information about those pages, measure and diagnose performance indicators, intercept of network re-

quests / responses, test Chrome extensions, automate form submission, user interface testing, keyboard input,

etc.

Playwright. Playwright is a Node library to automate the Chromium, WebKit and Firefox browsers with a

single API. It enables cross-browser web automation that is ever-green, capable, reliable and fast.

Headless is supported for all the browsers on all platforms. This solution has all abilities that Puppeteer

has, but also supports WebKit and Firefox browsers. Playwright also has really similar to Puppeteer programming

API.

Conclusion. Headless Chrome is a tool that allows you test our web applications and automate interac-

tions with them. DevTools protocol has a rich set of features that allows you to develop complete and independ-

ent software solutions for a wide range of tasks (monitoring web applications, development environment VS

Code). The ability to receive information, execute code, and automate browser actions opens up many possibili-

ties.

REFERENCES

1. GitHub [Electronic resource] Headless Chrome Node.js API. Access Mode: https://github.com/ Google-

Chrome / puppeteer. Access date: 09/27/19.

2. ChromeDevtools [Electronic resource] Chrome DevTools Protocol Viewer. Access Mode:

https://chromedevtools.github.io/devtools-protocol/. Access date: 09/27/19.

2. Chromium [Electronic resource] The Chromium Projects. Access Mode: https: // www.chromium.org/. Access

date: 09/27/19.

