
MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 168

UDC 004.047

CREATING A MINESWEEPER GAME USING THE JAVA PROGRAMMING LANGUAGE

D. MAROZAU, O. GOLUBEVA

Polotsk State University, Belarus

In this article, we will look at the structure of the code on which the game "Minesweeper" is based and

show step by step the methods that are used to create games like this. The Java language that is used for building

is one of the most common and universal programming languages.

First, let's create a Game Object class (Fig.1), it will represent the cell that will make up our field for the

game. In this class, you will need parameters such as:

Figure 1. –Cell coordinates x, y (simple integers);

• cell States: isMine (whether it is a mine or not), isOpen (whether we have already opened the cell or

not), isFlag (whether we have set a flag on the cell or not);

• the count of mines adjacent to this cell countMineNeighgors(integer).

We also create a constructor for this class.

The next step is to build the MinesweeperGame class, which will represent the processes that take place

inside the game. Here we need parameters (Fig.2) such as:

• the size of the side of the SIDE field (an immutable number);

• two-dimensional array of gameField objects (consisting of objects of the GameObject class);

• displaying the state of cells in the field: MINE, FLAG, CLOSED (immutable rows);

• counters: countFlags (how many flags are available for use), countClosedTiles (number of closed cells);

• the state in which the game is located is Game Stopped (if true, it ends the game and does not allow the

player to perform further actions).

Figure 2. – Now we can start describing the processes that occur in the game. Let's create an Initialize()

method (Fig.3 and 4) that is available for external use.

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 169

The method starts the game process and implements a simple interface through the console for the user.

The createGame() method enabled by the process initializes objects in the gameField array, randomly creates

mines with a given probability, and counts the number of mines in the countMinesOnField field. We also

introduced methods to simplify code understanding: Input() and showField(). Which implement the user

entering data from the keyboard and displaying the field on the console, respectively.

Figure 3

Figure 4

Now we will create logical sequences that represent the game mechanics. To do this, we need to create

several more methods.

First we implement openTile(x,y) (Fig.5), it is intended to open the cell that the user specified. This

method checks the cell for a flag and that it is already open. After that, it reduces the number of closed cells of

the field by 1 and checks the contents of the object: if the cell is a mine, it starts the process of completing the

game. If there is no mine in the cell, it opens it and displays the number of mines in the neighborhood. If there

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 170

are no mines in the neighborhood, then the same method is called for all the cells around using recursion. This is

followed by a check if the number of mines on the field and closed cells is equal to that the game is won and the

win () method is called.

Figure 5

The getNeighbors(gameField[y][x]) method is intended to return a list of cells that are neighbors for the

specified instance. The gameOver() method included in the method above assigns the value true when called,

which is an indicator of the end of the game and other actions are prohibited, which should also be done if you

win.

Figure 6

We will also need the markTile(x,y) method (Fig 6) to implement the ability to put and remove "flags" in

the place of the expected mines. To do this, first enter a check for whether the cell is already open and whether

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 171

the game is not over. This is followed by a sequence of actions depending on whether the cell has a flag: if it

does not exist, we set it and change the cell status in the field; otherwise, we return the cell to its original values.

After implementing all these actions, we can already start the game(Fig 8) by simply creating an object of

the MinesweeperGame class and calling its initialize() method (Fig.7).

Figure 7

Figure 8

REFERENCES

1. B.Eckel “Java Philosophy”

2. K. Sierra, B.Bates “Head first Java”

