
MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 174

UDC 004.432

SWIFT OBJECT-ORIENTED PROGRAMMING LANGUAGE: FEATURES AND ADVANTAGES

Y. KANIAYEU, I. RUSETSKI

Polotsk State University, Belarus

Swift is a general-purpose programming language built using a modern approach to safety, performance,

usability and software design patterns.

Mobile application development industry in the last five years has multiplied in leaps and bounds, chang-

ing the way businesses function worldwide. With enterprises aligning mobile apps to their productivity in recent

times, and with the rapid innovation in mobile devices across platforms, it calls for mobile app developers to

write several versions of an application for many different platforms using a single language and many pieces of

reusable code [1].

The iOS platform is a proprietary platform made by Apple. The iOS platform constituents are available for

phone devices and tablet devices: Iphone and Ipad. Apps could be developed for the iOS platform, and then tar-

get the same app to both an iPhone and an iPad. For building apps for iOS, one must have an Apple developer

account and the Xcode IDE on a Mac computer. Xcode comes with all the required Apple development toolkit:

SDKs, a code editor, compile/build tools, simulators, and a debugger. Apps can be built for iOS devices either by

using the native iOS SDK with Objective-C and Swift or with the various cross platform technologies that are writ-

ten against the SDK of that framework, but targeted for iOS [2].

Swift is a general-purpose, multi-paradigm, object-oriented, functional, imperative and block structured

language. It is the result of the latest research on programming languages and is built using a modern approach

to safety, software design patterns by Apple Inc. It is the brand new programming language for iOS application,

macOS application, watchOS application and tvOS application. Soon it became one of top 5 programming lan-

guages and gained popularity among Apple developer community over the few years of time replacing the old

school Objective C [3].

Brief history. Chris Lattner began the development of Swift in the year 2010 and collaborated with other

programmers at Apple in the course of the development of this language. The language ideas for Swift were tak-

en from Rust, Objective-C, Ruby, Haskell, C#, CLU, Python, and a range of other programming languages.

Swift was introduced at Apple's 2014 Worldwide Developers Conference (WWDC). It underwent an up-

grade to version 1.2 during 2014 and a more major upgrade to Swift 2 at WWDC 2015. Initially a proprietary lan-

guage, version 2.2 was made open-source software under the Apache License 2.0 on December 3, 2015, for Ap-

ple's platforms and Linux.

Through version 3.0 the syntax of Swift went through significant evolution, with the core team making

source stability a focus in later versions.

Swift 4.0, released in 2017, introduced several changes to some built-in classes and structures. Code writ-

ten with previous versions of Swift can be updated using the migration functionality built into Xcode.

Swift 5, released in March 2019, introduced a stable binary interface on Apple platforms, allowing the

Swift runtime to be incorporated into Apple operating systems. It is a source compatible with Swift 4. Swift 5.1

was officially released in September 2019. Swift 5.1 is built on the previous version of Swift 5 by extending the

stable features of the language to compile-time with the introduction of module stability. The introduction of

module stability makes it possible to create and share binary frameworks that will work with future releases of

Swift [4].

Key programming features. Swift includes features that make code easier to read and write, while giving

the developer the control needed in a true system programming language. Swift supports inferred types to make

code cleaner and less prone to mistakes, and modules eliminate headers and provide namespaces. Memory is

managed automatically, and you don’t even need to type semi-colons. Swift also borrows from other languages,

for instance the named parameters brought forward from Objective-C are expressed in a clean syntax that

makes APIs in Swift easy to read and maintain [5].

Swift is a protocol-oriented programming language, such programming paradigm is used from the release

time of Swift 2.0. in this approach, design protocols are similar to classes but this serves better compared to ob-

ject-oriented programming. Since the concepts like structs and enums don’t work properly as a struct cannot

inherit from another struct, neither can an enum inherit from another enum. So inheritance which is one of the

fundamental object-oriented concepts cannot be applied to value types. On the other hand, value types can in-

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 175

herit from protocols. The concepts used in protocol-oriented paradigm are: protocol extensions, inheritance and

compositions.

Similarly to C# and in contrast to most other OO languages, Swift offers built-in support for objects using

either pass-by-reference or pass-by-value semantics, the former using the class declaration and the latter using

struct. Structs in Swift have almost all the same features as classes: methods, implementing protocols and using

the extension mechanisms. For this reason, Apple terms all data generically as instances, versus objects or val-

ues. Structs do not support inheritance, however.

An important new feature in Swift is option types, which allow references or values to operate in a man-

ner similar to the common pattern in C, where a pointer may refer to a value or may be null. This implies that

non-optional types cannot result in a null-pointer error; the compiler can ensure this is not possible.

Advantages. The features of Swift are designed to work together to create a language that is powerful, yet

fun to use. Some advantages of Swift include:

- Safety. Swift was designed to improve the code safety for iOS products. It was created as a type-safe and

memory-safe language. Type safety means that the language itself prevents type errors. The importance of type

memory safety is that it helps avoid vulnerabilities associated with dangling or uninitialized pointers. These types

of errors are the most common in development and difficult to find and debug. These advantages of the Swift

language make it more attractive. Swift, on the other hand, doesn’t use pointers. If you miss a pointer in the

code, perhaps nil value, the app will crash. This approach allows programmers to find and fix bugs quickly. As a

result, the code will be cleaner and easier to understand. Such features as generics, optionals, and type interfer-

ence make an app developed in Swift less inclined to contain unnoticed bugs. [6]

- Dynamic libraries support. Dynamic libraries are the executable parts of code that can be linked to an

app. The difference between dynamic libraries and static libraries is that dynamic libraries can be linked to any

program during run-time. The shared code is loaded once and can be used by a large number of programs. This

code can be updated, changed or recompiled without recompiling the application that uses this library. Dynamic

libraries are automatically included in the AppStore’s download package. Static libraries are linked at the last

step of the compilation process after the program is placed in memory.

- Perfomance. From its earliest conception, Swift was built to be fast. Using the high-performance LLVM

compiler technology, Swift code is transformed into optimized native code that gets the most out of modern

hardware. The syntax and standard library have also been tuned to make the most obvious way to write your

code to perform the best whether it runs in the watch on your wrist or across a cluster of servers. Swift is a suc-

cessor to both the C and Objective-C languages. It includes low-level primitives such as types, flow control, and

operators. It also provides object-oriented features such as classes, protocols, and generics, giving developers

the performance and power they demand.

- Open Source. Swift is developed in the open at Swift.org, with source code, a bug tracker, forums, and

regular development builds available for everyone. This broad community of developers, both inside Apple as

well as hundreds of outside contributors, work together to make Swift even more stable and powerful. Open-

source Swift can be used on Linux to build Swift libraries and applications. The open-source binary builds provide

the Swift compiler and standard library, Swift REPL and debugger (LLDB), and the core libraries, so one can jump

right in to Swift development.

Despite its tender age and the attendant controversy, Swift already has a number of prominent success

stories. Some of the companies that chose the new language are Lyft, LinkedIn, Coursera, Pandora, Vimeo, Twit-

ter, Fitbit, and Groupon. Moreover, Facebook and Uber are reported to have shown significant interest in Swift.

Swift has become a more mature language with the latest update, but there are a lot of things to fix. Apple is

creating its own ecosystem with a stable ABI over its platforms, but it still lacks tooling and support for earlier

versions, which might be fixed in the next releases. Thus, Swift adoption will continue to grow, which soon might

lead to a complete displacement of Objective-C as the leading first-class language for iOS mobile application de-

velopment. Though Swift and Objective-C can coexist, that is libraries written in Objective-C and Objective-C util-

ities can be used in Swift, Apple is making it very obvious that Swift is the new default choice for developing iOS

apps. Swift is an easier, simpler, and a more compact language compared to Objective-C. Objective-C developers

should not have any trouble moving over to Swift.

REFERENCES

1. Dzone - Reasons Why Startups Choose Swift. – [Electronic resource] – Mode of access:

https://dzone.com/articles/7-reasons-why-startups-choose-swift-over-objective/. – Date of access:

03.03.2020.

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 176

2. IBM Developer - Choosing the best programming language for mobile app development. – [Electronic re-

source] – Mode of access: https://developer.ibm.com/technologies/mobile/articles/choosing-the-best-

programming-language-for-mobile-app-development/. – Date of access: 03.03.2020.

3. GeeksForGeeks - Introduction to Swift Programming; - [Electronic resource] – Mode of access:

https://www.geeksforgeeks.org/introduction-to-swift-programming/. – Date of access: 03.03.2020.

4. Wikipedia – Swift programming language. – [Electronic resource] – Mode of access:

https://en.wikipedia.org/wiki/Swift/. – Date of access: 03.03.2020.

5. Swift – About Swift. – [Electronic resource] – Mode of access: https://swift.org/about/. – Date of access:

03.03.2020.

6. Altexsoft - The Good and the Bad of Swift Programming Language. – [Electronic resource] – Mode of access:

https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-swift-programming-language/. – Date

of access: 03.03.2020.

