
MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 244

UDC 004.4

EFFICIENCY OF USING CRYSTAL PROGRAMMING LANGUAGE

FOR APPLICATION IMPLEMENTATION

O. MIKHNOVICH, O. MIKHNOVICH

Polotsk State University, Belarus

This article discusses the capabilities of the Сrystal programming language and its advantages over the C

and Ruby programming languages using the implementation of the Tower of Hanoi problem as an example.

Nowadays, there are many different programming languages. Some of them allow developers to write

well-readable and efficient codes, while others allow you to focus on the productivity of the future product. Pro-

gramming languages by type-checking are usually divided into two categories. They are static and dynamic. Stat-

ic examples are C, Java, C#. Dynamic examples are Python, JavaScript, Ruby. Ruby is one of the popular dynamic

interpreted programming languages.

Ruby has an operating system-independent multithreading implementation, strong dynamic typing, gar-

bage collection, and many other features. In terms of syntax, it is close to the Perl and Eiffel languages, in the

object-oriented approach to Smalltalk. Also, some features of the language are taken from Python, Lisp, Dylan,

and Clu. Nowadays, Ruby is used with the Rails framework. However, Ruby has its drawbacks. The most signifi-

cant drawback of Ruby is its performance. Consider Crystal programming language as a more productive alterna-

tive to Ruby [1].

Crystal is a general-purpose, object-oriented programming language, designed and developed by Ary

Borenszweig, Juan Wajnerman. Crystal is statically typed and has Ruby-like syntax. The first official release of the

language took place in June 2014. The language compiler was originally written in Ruby until it was rewritten in

Crystal in 2013. The language is under active development. Despite the similarities in syntax, Crystal is much

more efficient than Ruby to compile into machine code using LLVM, while sacrificing dynamic aspects of the lan-

guage. According to the test results, Crystal shows similar performance with the C language. The language uses

the Boehm garbage collector, has a macro system, it supports generics, as well as overloading methods and op-

erators [2].

Crystal is a programming language with the following goals:

1. Have a syntax like Ruby (but compatibility with it is not a goal).

2. Be statically type-checked, but without having to specify the type of variables or method arguments.

3. Be able to call C code by writing bindings to it in Crystal.

4. Have compile-time evaluation and generation of code, to avoid boilerplate code.

5. Compile to efficient native code.

To compare Crystal performance, we take two programming languages: Ruby and C. The choice fell on

these languages since Crystal is positioned as a technology balanced between these languages. To compare the

performance, we implement the solution of the Tower of Hanoi problem.

The Tower of Hanoi [3] (also called the Tower of Brahma or Lucas' Tower and sometimes pluralized as

Towers) is a mathematical game or a puzzle. It consists of three rods and a few disks of different sizes, which can

slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the

smallest at the top, thus making a conical shape.

There are several approaches to the solution (recursively, a “triangular” solution, a cyclic solution). All of

them give identical results. We implement a recursive solution.

The implementation of the solution in Ruby is presented in the listing below.

require ‘benchmark’

N=20

A=Array.new

B=Array.new

C=Array.new

LOG = false

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 245

def move(n, source, target, auxiliary)

 if n > 0

 move(n - 1, source, auxiliary, target)

 target.append(source.pop)

 print "********\n#{A}\n#{B}\n#{C}\n" if LOG

 move(n - 1, auxiliary, target, source)

 end

end

def run()

 (1..N).each { |v| A << v }

 A.reverse

 move(N, A, C, B)

end

puts "\nRuby work time: #{Benchmark.measure { run() } }"

The implementation of the solution in Crystal is presented in the listing below.

require "benchmark"

N = 20

A = Array(Int32).new

B = Array(Int32).new

C = Array(Int32).new

LOG = false

def move(n, source, target, auxiliary)

 if n > 0

 move(n - 1, source, auxiliary, target)

 target << source.pop

 print "********\n#{A}\n#{B}\n#{C}\n" if LOG

 move(n - 1, auxiliary, target, source)

 end

end

def run()

 (1..N).each { |v| A << v }

 A.reverse

 move(N, A, C, B)

end

puts "\nCrystal work time: #{Benchmark.measure { run() } }"

Listings with solutions to the Tower of Hanoi problem in C, Crystal and Ruby are available on GitHub [4].

After starting the solutions in the selected languages, we obtain the following results (in seconds) (ta-

ble 1).

Table 1. –Performance Tests (Tower of Hanoi Problem)

Language Test 1 Test 2 Test 3 Average values

C 0.000895 0.000957 0.000955 0.000936

Crystal 0.021738 0.021611 0.013851 0.019067

Ruby 0.364303 0.359521 0.359140 0.360988

After analyzing the results, we can conclude that Crystal programming language combines, as in C, per-

formance, and readablility, and conciseness; as in Ruby, its syntax and can be used to develop software products

MATERIALS OF XII JUNIOR RESEARCHERS’ CONFERENCE 2020

ICT, Electronics, Programming, Geodesy

 246

for operating systems of the Unix family. As far as the minuses of this language go, they are a weak community

and a small number of libraries so far.

REFERENCES

1. Ruby [Electronic resource] – Mode of access: https://www.ruby-lang.org/. – Date of access: 20.01.2020.

2. Crystal [Electronic resource] – Mode of access: https://crystal-lang.org/. – Date of access: 20.01.2020.

3. The Tower of Hanoi [Electronic resource] – Mode of access: https://en.wikipedia.org/wiki/Tower_of_Hanoi/.

– Date of access: 20.01.2020.

4. Crystal benchmark [Electronic resource] – Mode of access: https://github.com/olegmikhnovich/cr-rb-c-

benchmark/. – Date of access: 20.01.2020.

