
ELECTRONIC COLLECTED MATERIALS OF XI JUNIOR RESEARCHERS’ CONFERENCE 2019

ICT, Electronics, Programming

 157

UDC 004.432

NAMEKO LIBRARY

ALIAKSANDR VOITAU, ARKADZI OSKIN
Polotsk State University, Belarus

In this article I want to describe some of the features of Nameko, the problems I encountered, and their so-

lutions, as well as some useful extensions.

Nameko is a python library for building microservices. The Nameko service is just a Python class, some of
whose methods are labeled with @rpc decorator. RPC is a remote procedure call which means you can call
these methods from other Nameko services. Also you can call service methods from non-Nameko services. For
example, if you build a web application and you need to perform some background logic you can call this RPC
method.

Nameko RPC implementation works on top of the AMQP protocol. That means you need a AMQP broker.
One of them is a RabbitMQ. Briefly, when you start the Nameko service, RabbitMQ creates queues, and when
you call the RPC method, Nameko sends it to the queue. And when the service is not busy, it executes this
method. In the example below you can see how it works [1].

#service.py
from nameko.rpc import rpc, RpcProxy

class ServiceY:

 name = "service_y"

 @rpc

 def append_identifier(self, value):

 return u"{}-y".format(value)

class ServiceX:

 name = "service_x"

 y = RpcProxy("service_y")

 @rpc

 def remote_method(self, value):

 res = u"{}-x".format(value)

 return self.y.append_identifier(res)

#app.py
from nameko.standalone.rpc import ClusterRpcProxy

config = {

 'AMQP_URI': AMQP_URI # e.g. "pyamqp://guest:guest@localhost"

}

with ClusterRpcProxy(config) as cluster_rpc:

 cluster_rpc.service_x.remote_method("hello") # "hello-x-y"

Normal RPC calls block until the remote method completes, but proxies also have an asynchronous calling
mode to background or parallelize RPC calls:

with ClusterRpcProxy(config) as cluster_rpc:

 hello_res = cluster_rpc.service_x.remote_method.call_async("hello")

 world_res = cluster_rpc.service_x.remote_method.call_async("world")

 # do work while waiting

 hello_res.result() # "hello-x-y"

 world_res.result() # "world-x-y"

In some cases this code may have problems. For example, if the service doesn’t start, the ClusterRpcProxy
will wait forever. And it is very difficult to understand when your backend is not responding. The solution is to
use the timeout parameter when creating a ClusterRpcProxy. And when the time is out it raises an exception
which you can catch and say your frontend about the problem and also log it. Here is the example:

try:
 with ClusterRpcProxy(config, timeout=3) as cluster_rpc:

 cluster_rpc.service_x.remote_method("hello")
except RpcTimeout:
 logger.error(“service is not responding”)

P
ol

ot
sk

S
U

ELECTRONIC COLLECTED MATERIALS OF XI JUNIOR RESEARCHERS’ CONFERENCE 2019

ICT, Electronics, Programming

 158

There is no possibility to set a timeout inside the service in Nameko by using RpcProxy. But Nameko us-
es eventlet library to do multithreading. And you can use eventlet’s timeout to limit waiting [2].

with eventlet.timeout.Timeout(3):
 try:
 self.y.append_identifier(res)
 except eventlet.timeout.Timeout:
 logger.error(“service is not responding”)

One cool thing is that Nameko has extensions support which you may find useful when developing your
own Nameko services. One of them is nameko-sqlalchemy. SQLAlchemy is the Python SQL toolkit and Object
Relational Mapper that gives application developers the full power and flexibility of SQL. To use it with Nameko
you need to create YAML config file and describe databases and services. Then you need to declare the database
using the “Declarative_base” function and set the name constructor parameter as in the config file. After that
you can create a service field using “DatabaseSession” with declared database as a constructor parameter [3].

#config.yaml
DB_URIS:
 "service_x:first_base": “mysql://user:pass@host:port/firstbase?charset=utf8”
 "service_x:second_base": “mysql://user:pass@host:port/secondbase?charset=utf8”
 "service_y:other_base": “postgresql://user:pass@host:port/otherbase”

#service.py

from nameko_sqlalchemy import DatabaseSession
from sqlalchemy.ext.declarative import declarative_base

FirstBase = declarative_base(name=”first_base”)
SecondBase = declarative_base(name=”second_base”)
OtherBase = declarative_base(name=”other_base”)

class ServiceX:

 name = "service_y"

 first_base = DatabaseSession(FirstBase)
 second_base = DatabaseSession(SecondBase)

class ServiceY:

 name = "service_x"
 other_base = DatabaseSession(OtherBase)

Ok, now you can declare a database session and what can you do with it? How to request some data and
transfer it between other services? The main problem is that the sqlalchemy object is not serializable. A serializ-
able object means that it can be represented, for example, as json. It is necessary to transfer objects through a
message broker. It is used when calling the RPC method or when you want to return the result. A simple way to
create a serializable object is to create a python dict or list. It is easy to do because they have a similar structure
with JSON.

The marshmallow-sqlalchemy library can serialize the SQLAlchemy object very easily. To do it the first
thing you need is to create a table class and declare the table fields, then you need to create a shema object,
where you can declare the Meta SQLAlchemy object. And that's all, now you can do the serialization [4].

Base = declarative_base()

class Author(Base):

 __tablename__ = 'authors'

 id = sa.Column(sa.Integer, primary_key=True)

 name = sa.Column(sa.String)
def __repr__(self):

 return '<Author(name={self.name!r})>'.format(self=self)
class AuthorSchema(ModelSchema):

 class Meta:

 model = Author
author_schema = AuthorSchema()
author = Author(name='Chuck Paluhniuk')

session.add(author)

session.commit()

dump_data = author_schema.dump(author).data

{'id': 321, 'name': 'Chuck Paluhniuk'}

author_schema.load(dump_data, session=session).data

<Author(name='Chuck Paluhniuk')>

P
ol

ot
sk

S
U

ELECTRONIC COLLECTED MATERIALS OF XI JUNIOR RESEARCHERS’ CONFERENCE 2019

ICT, Electronics, Programming

 159

REFERENCES

1. Nameko documentation [Electronic resource]. – Mode of ac-
cess:https://nameko.readthedocs.io/en/stable/index.html – Date of access: 09.02.2019.

2. Eventlet documentation: timeout [Electronic resource]. – Mode of access:
http://eventlet.net/doc/modules/timeout.html – Date of access: 09.02.2019.

3. Source code of nameko_sqlalchemy: class Database [Electronic resource]. – Mode of access:
https://github.com/nameko/nameko-sqlalchemy/blob/master/nameko_sqlalchemy/database.py – Date of
access: 09.02.2019.

4. Marshmallow-SQLAlchemy documentation [Electronic resource]. – Mode of access: https://marshmallow-
sqlalchemy.readthedocs.io/en/latest/ – Date of access: 16.02.2019.

P
ol

ot
sk

S
U

