CHARACTERISTIC AND MINIMAL POLYNOMIALS IN PROBLEMS

YANA KAZAK, STEPAN EHILEVSKY, NINA GURIEVA
 Polotsk State University, Belarus

In linear algebra, the minimal polynomial of an n-by-n matrix A over a field F is the monic polynomial $p(x)$ over F of least degree such that $p(A)=0$. Any other polynomial q with $q(A)=0$ is a (polynomial) multiple of p. The following three statements are equivalent: $\lambda \in F$ is a root of $p(x), \lambda$ is a root of the characteristic polynomial of A, λ is an eigenvalue of A. The multiplicity of a root λ of $p(x)$ is the geometric multiplicity of λ and is the size of the largest Jordan block corresponding to λ and the dimension of the corresponding Eigen space. The minimal polynomial is not always the same as the characteristic polynomial.

The minor of the $k^{\text {th }}$ order of a matrix of size ($\mathrm{m} \times \mathrm{n}$), built on its rows with numbers $i_{1} \leqslant i_{2} \leqslant \cdots<i_{k} \leq m$ and columns with numbers $j_{1}<j_{2}<\cdots<j_{k} \leq n$ is called the main minor of the $k^{\text {th }}$ order, if $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{k}=j_{k}$.Among all the main minors of a square matrix, its successive main diagonal minors are distinguished.

The sum of the diagonal elements of a square matrix A is called its trace and is denoted by SpA. The characteristic matrix of a square matrix $A\left(\alpha_{i j}\right)$ of the $\mathrm{n}^{\text {th }}$ order is called the matrix $(A-\lambda E)$ with variable λ, taking any values. The determinant $\|A-\lambda E\|$ is called the characteristic polynomial of the matrix A, and its roots λ_{1}, λ_{2}, ..., λ_{n} - the characteristic roots or characteristic numbers of the matrix A.

Note that the characteristic polynomials of similar matrices are the same.
The characteristic polynomial of the matrix A of order n is a polynomial of the $n^{\text {th }}$ degree of λ and has the form:

$$
\begin{equation*}
\|A-\lambda E\|=(-1)^{n}\left(\lambda^{n}-p_{1} \lambda^{n-1}+p_{2} \lambda^{n-2}-\cdots \pm p_{n}\right) \tag{1}
\end{equation*}
$$

where p_{m} - the sum of the principal minors of the $\mathrm{k}^{\text {th }}$ order of the matrix A , in particular, $p_{1}=S p A, p_{n}=\|A\|_{, ~ E-}$ unit matrix.

Let us consider the following problem of calculating the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right)
$$

By the definition of the characteristic polynomial, we get:

$$
|A-\lambda E|=\left|\begin{array}{ccc}
(1-\lambda) & 2 & 0 \\
0 & (2-\lambda) & 0 \\
-2 & -2 & (-1-\lambda)
\end{array}\right|=-\lambda^{3}+2 \lambda^{2}+\lambda-2=-(\lambda-1)(\lambda+1)(\lambda-2)
$$

Let us find p_{1}, p_{2}, p_{2}, using the formula (1):

$$
p_{1}=5 p A=2, p_{2}=\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right|+\left|\begin{array}{cc}
1 & 0 \\
-2 & -1
\end{array}\right|+\left|\begin{array}{cc}
2 & 0 \\
-2 & -1
\end{array}\right|=-1, p_{1}=\left|\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right|=-2
$$

So we have

$$
\|A-\lambda E\|=(-1)^{2}\left(\lambda^{3}-p_{1} \lambda^{2}+p_{2} \lambda^{1}-p_{3}\right)=(-1)^{3}\left(\lambda^{3}-2 \lambda^{2}-\lambda+2\right)=-\lambda^{3}+2 \lambda^{2}+\lambda-2
$$

Let us display the way of D.K. Fadeev to calculate the characteristic polynomial:

$$
\begin{equation*}
\|A-\lambda E\|=(-1)^{n}\left(\lambda^{n}-k_{1} \lambda^{n-1}-k_{2} \lambda^{n-z}-\cdots-k_{n}\right) \tag{2}
\end{equation*}
$$

This method consists in applying the following formulas:

$$
\begin{gather*}
A_{1}=A, k_{1}=5 p A_{1}, B_{1}=A_{1}-k_{1} E, \\
A_{2}=A B_{1}, k_{2}=\frac{1}{2} 5 p A_{2}, B_{2}=A_{2}-k_{2} E, \tag{3}\\
A_{n-1}=A B_{n-2}, k_{n-1}=\frac{1}{n-1} S p A_{n-1}, B_{n-1}=A_{n-1}-k_{n-1} E, \\
A_{n}=A B_{n-1}, \quad k_{n}=\frac{1}{n} 5 p A_{n 2}, B_{n 2}=A_{n}-k_{n} E=0 .
\end{gather*}
$$

Equality $B_{n}=A_{n}-k_{n} E=0$ is used to control computing.
The main problem will be solved by the Fadeev method. To solve the problem, we consistently find all the matrices included in formulas (3):

$$
\begin{aligned}
& A_{1}=A=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right), k_{1}=5 p A_{1}=2, \\
& B_{1}=A_{1}-k_{1} E=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right)-\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 0 & 0 \\
-2 & -2 & -3
\end{array}\right), \\
& A_{2}=A B_{1}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 0 & 0 \\
-2 & -2 & -3
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 0 & 0 \\
4 & -2 & 3
\end{array}\right), k_{2}=\frac{1}{2} 5 p A_{2}=1 \text {. } \\
& B_{2}=A_{2}-k_{2} E=\left(\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 0 & 0 \\
4 & -2 & 3
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 2 & 0 \\
0 & -1 & 0 \\
4 & -2 & 2
\end{array}\right) \\
& A_{3}=A B_{2}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 2 & 0 \\
-2 & -2 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-2 & 2 & 0 \\
0 & -1 & 0 \\
4 & -2 & 2
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right), k_{3}=\frac{1}{3} S p A_{3}=-2, \\
& B_{3}=A_{3}-k_{3} E=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)+\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Therefore, according to the formula (2), we get:

$$
\| A-\lambda E \mid=(-1)^{3}\left(A^{3}-2 \lambda^{2}-\lambda+2\right)=-\lambda^{2}+2 \lambda^{2}+\lambda-2
$$

If in an arbitrary polynomial from λ

$$
P(\lambda)=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n}
$$

instead of λ, put a square matrix A of order n, then matrix

$$
P(A)=a_{0} A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A+a_{n} E
$$

where E - unit matrix, is called the value of the polynomial $P(A)$ at $\lambda=A$. If $P(A)=0$, than matrix A is called the matrix root of the polynomial, and $P(\lambda)$ is called the polynomial, which is annulled by the matrix A.

Every square matrix A serves as the root of some nonzero polynomial.
The polynomial $\phi(\lambda)$ of the least degree with the highest coefficient equal to one, annulled by the matrix A, is called the minimum polynomial of this matrix.

Every polynomial $P(\lambda)$, annulled by the matrix A, is exactly divisible by minimum polynomial $\phi(\lambda)$ of this matrix.

The characteristic polynomial $\|A-\lambda E\|$ of the matrix A and its minimum polynomial $\phi(\lambda)$ are related by the term

$$
\begin{equation*}
\varphi(A)=\frac{(-1)^{n}|A-A E|}{\bar{Q}_{l l}-1} \tag{4}
\end{equation*}
$$

where $D_{\mathrm{n}-1^{-}}$the greatest common divisor of all (n-1)-order minors of the matrix $(A-\lambda E)$.

The roots of the minimal polynomial $\phi(\lambda)$ are all the different roots of the characteristic polynomial $\|A-\lambda E\|$.

Let's find the minimal polynomial for the matrix A . The characteristic polynomial for the matrix A it's:

$$
|A-\lambda E|=-\lambda^{3}+2 \lambda^{2}+\lambda-2
$$

The greatest common divisor D_{2} of all second-order minors of the matrix

$$
(A-\lambda E)=\left(\begin{array}{ccc}
(1-\lambda) & 2 & 0 \\
0 & (2-\lambda) & 0 \\
-2 & -2 & (-1-\lambda)
\end{array}\right)
$$

is equalto one, since its minors

$$
\left|\begin{array}{cc}
(1-\lambda) & 2 \\
-2 & -2
\end{array}\right|=2(\lambda+1), \quad\left|\begin{array}{cc}
0 & (2-\lambda) \\
-2 & -2
\end{array}\right|=2(2-\lambda)
$$

are mutually simple. So,

$$
\varphi(\lambda)=\frac{(-1)^{2} \cdot\|A-\lambda E\|}{D_{2}}=\lambda^{3}-2 \lambda^{2}-\lambda+2=(\lambda-1)(\lambda+1)(\lambda+2)
$$

REFERENCES

1. Gilbert, J. Elements of Modern Algebra / J. Gilbert, L. Gilbert. -7th ed. - Brooks Cole, 2008. - 528 p.
2. Johnson, C. Matrix Analysis / C. Johnson, R. Horn. - Cambridge University Press, 2012. - 662 p.
3. Lang, S. Algebra, Graduate Texts in Mathematics / S. Lang. - 3d ed. - New York : Springer-Verlag, 2002. 914 p.
