
MATERIALS OF XI JUNIOR RESEARCHERS’ CONFERENCE                                                      2019 

ITC, Electronics, Programming 

 204

UDC 004.021 

 

USING DOCKER AND JENKINS IN MODERN SOFTWARE DEVELOPMENT 

 

PAVEL TALAIKA, IRYNA BURACHONAK 

Polotsk State University, Belarus 

 

In this article, we discuss complete software development lifecycle and the role of such tools as Docker 

Container Platform and Jenkins for Continuous Integration. 

 

In the process of software development, it is essential to delineate the stages the project is going through 

before being deployed in a real life production environment. Modern software engineering tools facilitate build-

ing and deployment of the projects. We will demonstrate the lifecycle of our project from writing source code to 

its deployment using Docker and Jenkins. 

Docker is a lightweight, autonomous and executable software suite that includes all the necessary tools 

to run and deploy your projects, it provides source code editing, execution environment, system tools and vari-

ous libraries. Using this suite, one can easily manage architecture components of the application [1]. Docker 

solves multiple problems relating to configuring execution environment to interact with a database, setting up 

application server and GUI. Configuring execution environment locally may be tedious and time-consuming and 

may also lead to unexpected and hard to tackle problems. If you are developing a project in a team, using Docker 

is a must. 

Jenkins is an open source automation server [2]. Jenkins provides the programmer with hundreds of 

plugins that facilitate deployment and automation of any project. 

The project was developed using Java 1.8, Spring Boot and Spring Data. The database layer is represented 

by PostgreSQL, the project was build using Maven. 

At this point, we have all the tools we need. The first step is project configuration, as a prerequisite one 

needs to have basic knowledge of Docker and terminal commands of the required operating system. Download-

ing the image with Jenkins and Docker Store is also a requirement. After having downloaded the image, the con-

tainer can be started by issuing the docker run command and specifying options like ports, container names and 

the path to the image itself. If it is necessary to use additional programs, one can write a Dockerfile. 

During initial stages of the development, a need for additional configuration has arisen, so the Docker file 

had to be written, moreover having written the Dockerfile allowed for automatic loading of the required plugins 

for the project. Using plugins is one of the necessary conditions for building and deploying the project. In order 

to automatically download all the necessary plugins into the project’s root directory, one needs to create the 

plugins.txt file that specifies the necessary plugins in the following format plugin_name:version, each new plugin 

needs to be specified on the new line. Commands that need to be added to Dockerfile are described below: 

COPY ./plugins.txt /usr/share/jenkins/ref/plugins.txt 

RUN /usr/local/bin/install-plugins.sh</usr/share/jenkins/ref/plugins.txt 

After starting the built image, plugins specified in plugins.txt will be automatically downloaded at start-up. 

Next we have to create Tomcat and PostgreSQL image for deployment and data storage which is built us-

ing .war file generated by Maven. Maven plugin that is installed in Jenkins is responsible for building the project. 

One should also bear in mind that all containers should create the interconnected system for controlling the 

building and deployment processes, in order to achieve that you need to forward the ports from Tomcat to 

PostgreSQL and bind Jenkins by using common volume which can be done by running the Jenkins container with 

--volumes-from=tomcat:rw option and running Tomcat with –v=tomcat-data:/usr/local/tomcat/webapps:rw op-

tion [3]. 

Let’s create the container with PostgreSQL by issuing the command as described below: 

docker run -p 5432:5432 --name postgres -e POSTGRES_PASSWORD=postgres -d postgres 

The next step is to create Tomcat container which is done by running the command as described below: 

docker run -it -p 8080:8080 --name tomcat -v tomcat-data:/usr/local/tomcat/webapps:rw --link post-

gres:postgres -d tomcat:latest 

--link option lets us connect Tomcat and PostgreSQL which also allows volume tomcat-data to be availa-

ble in Jenkins [4]. 

P
ol

ot
sk

S
U



MATERIALS OF XI JUNIOR RESEARCHERS’ CONFERENCE                                                      2019 

ITC, Electronics, Programming 

 205

Command for running Jenkins are as follows: 

docker run -p 8888:8080 -p 50000:50000 --name=jenkins-master --mount source=jenkins-

log,target=/var/log/jenkins --mount source=Jenkins-data,target=/var/jenkins_home --volumes-from=tomcat:rw -

d jenkins-artteam 

As you can see in the code above, data storage and backup volumes are also created. After start-up, 

Jenkins will be available at http://localhost:8888/. 

After having configured the container system, one needs to configure spring.datasource and 

application.properties and pom.xml to be able to build the project as a .war file. 

For more flexibility, VCS is used. When building the project using VCS one needs to specify what changes 

are affected and what branch needs to be built. Under “Project management” we specify git repository and 

credentials such as user and password, credentials are needed to log in to Jenkins and configure the build item. 

Under “Build” we specify the plugin that will build the project. Under “Add build stage” we specify the location of 

the script which will copy the generated .war file into the volume tomcat-datastartup directory if the build was 

successful (Figure). 

 

 
 

Figure. – List of builds in Jenkins dashboard 

 

Conclusion. The final product of this work is a full-fledged automated docker-container system that 

facilitates control over project building and deployment, its VCS system allows to track changes that can 

potentially lead to failed builds. Jenkins also allows for project testing; users of the system can create certain 

stages that need to be completed in the lifecycle of the project build before being released. 

 

REFERENCES 

 

1. Docker Documentation. Overview of Docker editions [Electronic resource]/ – Access mode: 

https://docs.docker.com/install/overview/. – Access date: 10.01.2019. 

2. Jenkins Documentation. Getting started with the Guided Tour [Electronic resource]. – Access mode: 

https://jenkins.io/doc/pipeline/tour/getting-started/. – Access date: 11.01.2019. 

3. Docker Documentation. Use volumes [Electronic resource]. – Access mode: 

https://docs.docker.com/storage/volumes/. – Access date: 11.01.2019. 

4. Docker Documentation. Use bridge networks [Electronic resource]. – Access mode: 

https://docs.docker.com/network/bridge/. – Access date: 11.01.2019. 

P
ol

ot
sk

S
U


