
MATERIALS OF X JUNIOR RESEARCHERS’ CONFERENCE 2018
ITC, Electronics, Programming

 224

UDC 004[822+823]

SEMANTIC FRAMES: INFERENCE ENGINE FOR KNOWLEDGE EXTRACTION

ALIAKSANDR DUNCHANKA, DZMITRY PIATKIN
Polotsk State University, Belarus

 This article describes a process of designing an inference engine for extraction of knowledge from

preprocessed sentences in English, which uses semantic frames as a mean for representation of both the
production rules and the acquired information.

In order to engineer an inference engine (IE) [1] for knowledge extraction two conditions must be met.

First – the sentences being passed to the engine must be already lexically, grammatically and syntactically
analyzed. Second – the result of this preprocessing must be represented in a unified way. The best approach
would be to pass it as a group of interlinked objects of certain types which provide methods for requesting
needed information.

We will start off by defining two primitive classes (Fig. 1): <base-node> encapsulates a type of a node,
<text-node> contains a string representing an individual word.

Fig. 1. Top-level classes

Now we proceed to define two intermediate classes (Fig. 2). <node> is a generic class that describes a
node's syntactic role and holds a reference to its parent node. <compound-node> is intended to represent
constructs, consisting of several nested simple or compound nodes.

Fig. 2. Middle-level classes

Note that <compound-node> is not directly derived from <text-node>, but still responds to get-text. That
is, it returns a string obtained by merging results of calling get-text on its children.

Having established a set of basic types, we can then design the actual classes necessary to represent the
result of sentence analysis (Fig. 3–4).

Fig. 3. Classes for representation of simple nodes

Fig. 4. Classes for representation of complex nodes

MATERIALS OF X JUNIOR RESEARCHERS’ CONFERENCE 2018
ITC, Electronics, Programming

 225

Relations between all previously mentioned classes are shown in Fig. 5.

Fig. 5. Generic class diagram

Since we will implement our IE in Common Lisp [2], there is no need to introduce any additional abstract
classes (interfaces) as a containers for methods repr, get-shallow-tree-expr and get-deep-tree-expr, because we
have a powerful mechanism of generic functions [3] at our disposal to deal with this.

Every invocation of IE must supply two required parameters: one is an instance of <sentence> class and
another is a pool of semantic frames (SF) [4][5] which provides the essential knowledge – production rules [6].
These rules are generated on-the-fly from a S-expression [7] based representation. The general layout of both
extraction and subsumption rules, defined using EBNF [8], is the following:

rule list = pool spec;
pool spec = '(pool', pool name, shared data, {frame spec}, ')';
pool name = node name;
shared data = '(', {binding}, ')';
binding = '(', data id, data, [data type], ')';
data id = SYMBOL | KEYWORD;
frame spec = '(frame', [frame reference], frame name, frame classifiers, {slot spec}, ')';
frame reference = node reference;
frame name = node name;
frame classifiers = node classifiers;
slot spec = regular slot spec | shared slot ref;
regular slot spec = '(slot', [slot reference], slot name, slot classifiers, slot data spec, ')';
shared slot ref = '(slot-ref', slot reference, ')';
slot reference = node reference;
slot name = node name;
slot classifiers = node classifiers;
slot data spec = data spec | data ref spec | reference spec | frame spec;
data spec = 'data', data, [data type];
data = VALUE;
data type = KEYWORD;
data ref spec = 'from', data id;
reference spec = 'node', reference;
reference = KEYWORD;
node reference = KEYWORD;
node name = STRING | NIL;
node classifiers = '(', {classifier}, ')';
classifier = SYMBOL.

An extraction rule is a RELATION-frame consisting of one or many CONDITION- and ACTIVITY-slots, as well

as an arbitrary number of sub-relation slots (without classifiers). The format of the corresponding symbolic
expression obeys the following syntax:

rule frame = frame head, '(relation)', {relation attribute}, {node condition slot}, {node activity

slot}, {subnode relation slot}, tail;
frame head = '(frame', name;

MATERIALS OF X JUNIOR RESEARCHERS’ CONFERENCE 2018
ITC, Electronics, Programming

 226

slot head = '(slot', name;
name = STRING | NIL;
tail = ')';
relation attribute = slot head, '(attribute) data', VALUE, tail;
node condition slot = slot head, '(in condition', [condition negation], tail, condition slot data | node

condition frame, tail;
node condition frame = frame head, '(condition', [condition negation], condition modifier, tail,

{condition slot}, tail;
condition quantifier = 'necessary' | 'possibly';
condition negation = 'not';
condition modifier = 'and' | 'or' | 'xor' | 'imp' | 'eqv';
condition slot = slot head, '(condition', [condition quantifier], [condition negation], tail,

condition slot data | node condition frame, tail;
node activity slot = make instruction slot | {name instruction slot} | [data instruction slot] |

{classifiers instruction slot} | {clarifiers instruction slot} | {export instruction
slot} | {import instruction slot} | compound instruction slot;

export instruction slot = '(slot "export" (out activity) data (', entity selection, {target context level}, ')',
tail;

import instruction slot = '(slot "import" (out activity) data (', entity selection, {source context level}, ')',
tail;

entity selection = ':frame' | ':slot';
target context level = context level;
source context level = context level;
context level = 'top' | ':top' | '0' | POSITIVE INTEGER;
make instruction slot = '(slot "make" (out activity) data ', make instruction | ('(', {make instruction}, ')'),

tail;
make instruction = ':frame' | ':pslot/frame' | ':cslot/frame' | ':pframe/slot' | ':cframe/slot';
name instruction slot = '(slot "name" (out activity) data (', target context level, entity selection, text

source, [text filter], '))';
text source = ':form-text' | ':lemma-text';
text filter = f-expression;
f-expression = STRING;
data instruction slot = '(slot "data" (out activity) data (', target context level, text source, [text filter],

'))';
classifiers instruction slot = '(slot "classifiers" (out activity) data (', target context level, entity selection,

entity classifiers, '))';
entity classifiers = {SYMBOL};
clarifiers instruction slot = '(slot "clarifiers" (out activity) data (', target context level, entity selection, entity

clarifiers, '))';
entity clarifiers = {f-expression};
compound instruction slot = '(slot nil (out activity) (frame nil nil ', {node activity slot}, '))'.

The inference process has a top-down depth-first direction, i.e. it starts with top-level nodes and for each

of them: checks the node itself, recursively checks its children and only then selects the next one on the same
level. IE iterates over all rules (in order they are defined) and if some relation holds for the current node (i.e.
conjunction of evaluated conditions equals TRUE), then IE executes its instructions sequentially. For a compound
node IE will also try to apply sub-relations (if they are present) to its children. When any particular relation holds
and it has an attribute «once-only» set to TRUE, IE would stop the iteration and would not attempt to apply
remaining rules to the current node.

Conditions are a fundamental part of decision-making strategies. They allow to pick important pieces of a
sentence and reject other insignificant or redundant information. Every condition name is associated with a
corresponding function that retrieves a specific node's attribute. Evaluation of a condition involves invocation of
such a function with the current node as an argument and comparing the result with a regular expression, stored
in the slot. Table 1 provides short descriptions for all possible conditions.

MATERIALS OF X JUNIOR RESEARCHERS’ CONFERENCE 2018
ITC, Electronics, Programming

 227

Table 1. – Conditions

Name Description
type Node's type expression
stree Node's shallow tree expression
dtree Node's deep tree expression
role Node's role expression
text Node's text
has-misc-attrs List of node's miscellaneous attributes
has-attrs One or list of node's grammatical categories
attrs List of node's grammatical categories and their values
lemma-text Lemma's text (words only)
lemma-has-type One or list of lemma's lexical categories (words only)
lemma-has-attrs Lists of lemma's lexical plus grammatical categories (words only)
lemma-type Lemma's lexical category (words only)
lemma-attrs List of node's grammatical categories and their values for a given lexical category

(words only)
dir-parent-type Type of a direct parent node
top-parent-type Type of a top-level parent node
dir-parent-stree Shallow tree of a direct parent node
top-parent-stree Shallow tree of a top-level parent node
dir-parent-dtree Deep tree of a direct parent node
top-parent-dtree Deep tree of a top-level parent node
dir-parent-role Role of a direct parent node
top-parent-role Role of a top-level parent node
dir-parent-text Text of a direct parent node
top-parent-text Text of a top-level parent node
sentence-type Sentence type
sentence-text Sentence text

For every sentence node being processed IE creates a separate context with two unset references – for a

frame and for a slot; and two links – to a parent context and to the node itself. Because all contexts are
connected all the way to the top, it is possible to define relations between frames using «make» instruction (and
cross-references using «import»/«export» commands). The behavior of this instruction can be controlled by
specifying one or several of symbolic constants described in Table 2.

Table 2. – Arguments to «make» instruction

Literal Description
frame Create a new frame and assign it to the reference in the current context
pslot/frame Create a new frame and assign it both to the reference in the current context and as data of a slot

in the parent context
cslot/frame Create a new frame and assign it both to the reference and as data of a slot in the current context
pframe/slot Create a new slot of a frame in the parent context and assign it to the reference in the current

context
cframe/slot Create a new slot of a frame in the current context and assign it to the reference in the current

context

MATERIALS OF X JUNIOR RESEARCHERS’ CONFERENCE 2018
ITC, Electronics, Programming

 228

After the extraction of knowledge is completed, the pool of newly-created frames is passed further to the
subsumption procedure which performs normalization of relations and updates the existing knowledge base.

REFERENCES

1. Inference engine [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Inference_engine. – Date of access: 10.01.2018.
2. Common Lisp [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Common_Lisp. – Date of access: 11.01.2018.
3. Generic function [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Generic_function. – Date of access: 12.01.2018.
4. Semantic network [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Semantic_network. – Date of access: 13.01.2018.
5. Frame (artificial intelligence) [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Frame_(artificial_intelligence). – Date of access: 14.01.2018.
6. Rule-based system [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Rule-based_system. – Date of access: 15.01.2018.
7. S-expression [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/S-expression. – Date of access: 16.01.2018.
8. Extended Backus–Naur form [Electronic resource] / Wikipedia – The Free Encyclopedia. – Mode of access:

https://en.wikipedia.org/wiki/Extended_Backus–Naur_form. – Date of access: 17.01.2018.

