MATERIALS OF X JUNIOR RESEARCHERS' CONFERENCE 2018
ITC, Electronics, Programming

UDC 005
SERVICE VERSIONING IN MICROSERVICE ARCHITECTURE

YAUHENI ZHYDZETSKI, SERGEY SURTO
Polotsk State University, Belarus

Microservice architecture is all about integration and contracts. APl versioning is extremely important to
control compatibility of different parts of system and provides completed business features. There are different
versioning techniques and it is important to select the most suitable for your project.

Microservices is a variant of the service-oriented architecture (SOA) architectural style that structures an
application as a collection of loosely coupled services. In a microservices architecture, services should be fine-
grained and the protocols should be lightweight. The benefit of decomposing an application into different small-
er services is that it improves modularity and makes the application easier to understand, develop and test. It
also parallelizes development by enabling small autonomous teams to develop, deploy and scale their respective
services independently. It also allows the architecture of an individual service to emerge through continuous
refactoring. Microservices-based architectures enable continuous delivery and deployment [1].

The microservice architecture is not a silver bullet. It has several drawbacks. One of the most important —
is integration complexity. Many different services work together in continuously changing environment to pro-
vide competed business feature. The probability of failure rapidly increases with number of service integration
points, so it is extremely important to have a possibility to control compatibility of different parts of the system
[2]. One of the most popular technique for that —is service versioning.

Service Versioning is the approach followed by service developers to allow multiple versions of the same
service to be operational at the same time. To give an analogy, any re-usable software API library has multiple
versions used by different applications. The same analogy applies to services [2].

The most popular versioning scheme today — is Semantic Versioning 2.0.0. It proposes a simple set of
rules and requirements that dictate how version numbers are assigned and incremented. These rules are based
on but not necessarily limited to pre-existing widespread common practices in use in both closed and open-
source software. For this system to work, first need is to declare a public API. This may consist of documentation
or be enforced by the code itself. Regardless, it is important that this APl be clear and precise. Once public API
identified, every service change will trigger specific increments to its version number. Consider a version format
of X.Y.Z (Major.Minor.Patch). Bug fixes not affecting the APl increment the patch version, backwards compatible
API additions/changes increment the minor version, and backwards incompatible API changes increment the
major version [3]. Before the service firstly published to production, major version may be zero, and in this case,
minor and patch bump-up rules may be ignored.

Semantic versioning is very suitable for libraries, but in case of microservice architecture, classical seman-
tic versioning Major.Minor.Patch format should be interpreted as Breaking.Feature.Fix API change. For a live
production system, it is actually need to worry about making breaking changes to services (the first SemVer
number). If developer wants to be able to make a breaking change to a service, he must provide a way of making
that change while still supporting the old version of the contract. Feature part of version is also important to
indicate left border of supported API versions for the consumer. As for the patch/fix part, it is internal service
implementation detail, which not affects contract between the service and its consumer.

Breaking changes are any change to the contract, which is provided by the service, which is not backward
compatible. There are many different types of changes, which could have the potential to be breaking. The most
common places for breaking change are transfer schemas and endpoints. The transfer schema is the structure of
the data you will either receive or emit in response to an external request. In HTTP this includes any response
payload and the structure of posted content. In a messaging environment, this includes events that service emits
and commands it receives. Endpoints are the place another service would go to connect to the service. In HTTP
this is the URL, in messaging the source that service listening to commands on or publishing events to and its
routing information. There are many different implementation techniques to provide backward compatibility,
but it is impossible completely avoid breaking changes. API First method can help to pay due attention to con-
tract design and reduce their quantity.

API First is one of engineering and architecture principles. Concisely, API First requires to define APIs out-
side the code first using a standard specification language and to get early review feedback from peers and client
developers. Service APIs should evolve incrementally. Of course, API specification will and should evolve itera-

231



MATERIALS OF X JUNIOR RESEARCHERS’ CONFERENCE 2018
ITC, Electronics, Programming

tively in different cycles; however, each starting with draft status and early team and peer review feedback. API
may change and profit from implementation concerns and automated testing feedback. API evolution during
development life cycle may include breaking changes for not yet productive features. APl First does not mean
that developer must have full domain and requirement understanding and can never produce code before have
defined the complete APl and get it confirmed by peer review. On the other hand, API First obviously is in con-
flict with the bad practice of publishing API definition and asking for peer review after the service integration or
even the service productive operation has started. It is crucial to request and get early feedback — as early as
possible, but not before the APl changes are comprehensive with focus to the next evolution step and have a
certain quality, already confirmed via team internal reviews.

There are different techniques and technologies for API definition. The most popular are OpenAPI Specifi-
cation with Swagger implementation and Contract Testing with Pact implementation.

Swagger is an open source software framework backed by a large ecosystem of tools that helps develop-
ers design, build, document, and consume RESTful Web services. While most users identify Swagger by the
Swagger Ul tool, the Swagger toolset includes support for automated documentation, code generation, and test
case generation. It is extremely powerful framework, even cumbersome, but it is not suitable outside RESTful API
(4].

Contract Testing is writing tests to ensure that the explicit and implicit contract of a service works as ad-
vertised. This methodology applicable for any kind of API: synchronous HTTP-based, asynchronous message-
based, binary protocols. The Pact is a family of frameworks provide support for Consumer Driven Contracts test-
ing. Consumer Driven Contracts is a pattern that drives the development of the Provider from its Consumer's
point of view. It is Test Driven Development for services [5].

It is extremely important and relatively easy to implement contract testing as a part of the continuous de-
livery build pipeline. Continuous integration (Cl) system should make cross validation for all contracts of the ser-
vice against its consumers from production environment to check backward compatibility and validate version
increment made by developer before real deployment. In addition, Cl system should generate service manifest
describing all external service contracts and supported versions. The manifest may be used by orchestration sys-
tem on update and rollback operations to control cross compatibility of all services within a single environment.
Except the manifest generation, Cl system should assign unique identifier to the each built service to allow its
simple identification in build history. For such simple cases, semantic versioning is overabundant, and recom-
mended way is to use simple sequential counter or time-based generator.

There are different service versioning techniques, and each is with their own pros and cons. In our com-
pany, we use adapted semantic versioning approach for each separate service public API, and simple time-based
unique versioning for a whole service. In addition, we use mandatory automated contract-based API testing to
eliminate human error in version assignment. That allows us to use declarative description of microservice clus-
ter structure, isolated testing of each service and automated control of cross-service consistency at the runtime
environment, with the preservation of independent development and continuous deployment of each separate
service.

REFERENCES

1 Microservices [Electronic resource] / Wikipedia, the free encyclopedia. — Mode of access:
https://en.wikipedia.org/wiki/Microservices. — Date of access: 14.02.2018.

2 Harris, T. SOA Service Versioning - Best Practices [Electronic resource] / T. Harris // Become The Platform. —
Mode of access: http://www.thbs.com/thbs-insights/soa-service-versioning-best-practices. — Date of ac-
cess: 14.02.2018.

3 Semantic Versioning 2.0.0 [Electronic resource] / Semantic Versioning. — Mode of access:
https://semver.org/spec/v2.0.0.html. — Date of access: 14.02.2018.
4 OpenAPl Specification [Electronic resource] / Swagger documentation. — Mode of access:

https://swagger.io/specification. — Date of access: 15.02.2018.
5 Pact introduction [Electronic resource] / Pact documentation. — Mode of access: https://docs.pact.io. —
Date of access: 15.02.2018.

232



