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ON SOME METHODS FOR STUDYING
QUALITATIVE AND ASYMPTOTIC PROPERTIES OF SOLUTIONS
TO HIGHER-ORDER QUASILINEAR DIFFERENTIAL EQUATIONS

1.V. Astashova

For the equation

n—1
v+ ai @)y = pla)lylFseny | (1)
=0
where k> 1, n > 2, the functions p, ag, ..., a,_1 are continuous for x > 0, we discuss

some methods for studying qualitative and asymptotic properties of its solutions. (See,
for example, [1-6]).

Theorem 1. If the continuous functions ag, ..., an—1 and p satisfy the conditions
/x”_j_1|aj(x)|dx<oo forall j€{0,...,n—1} (2)
z0

and, for some integer number m € {0, ..., n— 1}, the condition
Jam I ) de < o 0

xo
then for any C # 0 there exists a solution y to equation (1) satisfying, as x — oo,

C'm! ™7
e ‘ forall j € {0,...,m},

O ()
e~ )

o9}

Y9 (z) = o <xm—j> and /Sj—m—l ‘y@(s)‘ ds <oo forallje{m+1,....,n—1}

Sketch of the proof. To prove this theorem, we use a factorisation of the linear differential
operator producing the left-hand side of (1). We use |7, Chap.1, Lemma 3.1, Lemma 3.2|
and the following lemmas.
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Lemma 1. If continuous functions a; satisfy inequalities (2), then for any h # 0 the
equation

n—1
Y)Y as(e)y ) =0
=0
has a €™ solution y(x) such that
y(r) — h as x — 00,
Py e) -0 asx—o0, j=1,...,n—1,

o9}

/xj_l ‘y@(x)‘ dr <o, j=1,....,n
0
Lemma 2. Any linear differential operator

where all continuous functions a; satisfy (2), can be represented in a neighborhood of +0o0

as the composition operator
L=byByo---0B,,

where all Bj, 7 = 1,...,n, are the first-order operators w +— d—(bju) and each b,
. x

7=0,...,n, isa ¢ function satisfying at infinity

(ii) x’bﬁ”(x) — 0 forall ie{l,...,j—1},

(iif) f !

Remark 1. Note, that the first statement of this theorem even in a more general case
(k > 0 instead of k > 1) follows from [4, Corollary 8.2] obtained by a quite different
method.

Remark 2. In [6], under conditions (2) and more strong than (3) condition

‘dx<oo forall i€ {1,...,j} and some xy € R.

09}

/ﬂ 4 ()| dr < oo,

0

a more strong result is obtained: it is proved that for any Cy, ..., C,_; there exists a
solution y(x) to equation (1) such that

)= 3 Ce) t o)), oo

where the functions &; form a fundamental system of solutions to equation (1) with p =0,
and

- Do), 1 oo

jl
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Remark 3. In [5], by the same method of a suitable representation for the linear
differential operator, under some conditions on a;, j =0, ..., n—1, a criterion is obtained
for equation (1) to have a solution equivalent at infinity to any non-zero constant, and an
oscillatory criterion was proved.
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A FORMULA FOR THE BOHL EXPONENT OF
DISCRETE TIME-VARYING SYSTEMS

A. Czornik, M. Niezabitowski

It is known that the stability of linear time-varying systems is not determined by
the position of the spectra of the coeflicient matrices. There are examples of continuous-
time systems, the coeflicients of which have spectra lying in the left half-plane, and these
systems are not stable, and conversely all matrices of a stable system may have spectra of
the coefficients lying in the right half-plane (see e.g. [6], p. 257). Similarly, one can give
examples of stable, asymptotically stable, and even uniformly exponentially stable discrete-
time systems with time-varying coefficients, whose coefficient matrices have eigenvalues
outside the unit circle, as well as unstable systems with matrices which all eigenvalues
lying inside the unit circle. However, if the coefficient matrices of a discrete time-varying
system have spectra in the unit circle, stability can be guaranteed by a sufficiently slow
variation of the coefficients. This is the basic idea behind the so-called freezing method
that was, for discrete-time systems, for the first time described in [2]. A comprehensive
description of the results obtained with this technique is provided in Section 10.1 of [4]
(see also [3], [5] and the references therein).

Uniform exponential stability of a linear system is characterized by the Bohl exponent.
A system is uniformly asymptotically stable if and only if the Bohl exponent is negative
(|6], Theorem 3.3.15). The above-mentioned lack of dependence between the spectra of the
coeflicients and the stability causes that in general it is not possible to give the formula for
the Bohl exponent expressed by the eigenvalues of the coefficients. However, as noted by
V. M. Millionschikov in [8] and by J. Daleckii and M.G. Krein in the monograph [1, p. 200],
such a formula can be given for continuous-time systems with weak variation by Persidskii
(see also [7], Section 3.6). The main result of this note is to provide such a formula for
discrete systems. On the basis of this formula, we will obtain the necessary and sufficient



