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BLOW-UP PROBLEM FOR SEMILINEAR PARABOLIC EQUATION 
WITH GENERAL NONLINEARITIES IN EQUATION 

AND BOUNDARY CONDITION

A. Gladkov, M. Guedda

We consider the global solvability and blow-up in finite time for semilinear heat equation

ut = Au + a(t)f (u) for x G Q, t > 0, (1)

with nonlinear boundary condition

■ = £(t)g(u) for x G dQ, t > 0, (2)

and initial datum
(3)x g Q,

with smooth boundary dQ, v is the 
Here f (u) and g(u) are nonnegative 
are nonnegative continuous functions

u(x, 0) = u0(x) for

where Q is a bounded domain in R^ for n > 1 
unit exterior normal vector on the boundary dQ. 
continuous functions for u 0, a(t) and в (t)
for t 0, u0(x) G C 1(Q), u0(x) > 0 in Q and satisfies boundary condition (2) as t = 0. 
We will consider nonnegative classical solutions of (l)-(3).

We prove several blow-up results for (l)-(3).
Theorem 1. Let g(s) be a nondecreasing positive function for s > 0 such that

/ ds/ g<5) <"

and

У в(t) dt = +to. 

о

Then any nontrivial nonnegative solution of (l)-(3) blows up in finite time. 
Theorem 2. Let f (s) > 0 for s > 0,

/ ds/7(5) < "

and

У a(t) dt = +to.

0
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Then any nontrivial nonnegative solution of (l)-(3) blows up in finite time.
To formulate global existence result for problem (l)-(3) we suppose:

f (s) is a nonnegative locally Holder continuous function for s fi 0, (4)

there exists p > 0 such th at f (s) is a positive nondecreasing fu nction for s G (0, p), (5) 

/ x ■ lim0 — = 0, (6)
J f (s) s ■" s
0

У (a(t) + в(t)) dt < +x (7)

0
and there exist positive constants y, t0 and K such that Y > t0 and

t
I e Л' for t Y. (8)

t-to

Theorem 3. Let (f)-(8) hold. Then problem (l)-(3) has bounded global solution for 
small initial datum.

The results of the talk have been published in [1].
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CLASSICAL SOLUTION OF THE INITIAL-VALUE PROBLEM 
FOR A ONE-DIMENSIONAL QUASILINEAR WAVE EQUATION

V.I. Korzyuk, J.V. Rudzko

In this report we shall consider the question of global solvability in [0, x) x R of the 
initial-value problem

Jdt2u(t, x) —a2dXu(t, x)+f (t, x,u(t, x), dtu(t, x), dxu(t, x)) = F(t, x), (t, x) G (0, x) xR, (,) 
[ u(0,x) = p(x), dtu(0,x) = fi(x), x G R, () 

where a G (0, x), p and fi are some real-valued functions defined on the real axis.
Theorem 1. Assume p G C2(R), fi G C 1(R), F G C 1([0, x) x R), f G C 1([0, x) x R4) 

and f is Lipschitz continuous in the three last variables. Then there exists a unique classical 
solution u of the initial-value problem (1).

Sketch of the proof. We will look for a solution u having the form u = w + v where 
v solves the homogeneous wave equation

dtT(t, x) — a2dXv(t, x) = 0, (t, x) G (0, x) x R,
v(0,x) = p(x), dtv(0,x)= fi(x), x G R,


