GLOBAL CORRECTNESS THEOREM TO GOURSAT PROBLEM FOR INHOMOGENEOUS ADJOINT MODEL TELEGRAPH EQUATION IN THE UPPER HALF-PLANE

F.E. Lomovtsev

In the upper half-plane $G=]-\infty,+\infty[\times] 0,+\infty[$ it is required to find a classical solution and a correctness criterion to the Goursat problem for the adjoint model telegraph equation

$$
v_{\tau \tau}(s, \tau)-\left(a^{2}(s, \tau) v(s, \tau)\right)_{s s}+\left(a^{-1}(s, \tau) a_{\tau}(s, \tau) v(s, \tau)\right)_{\tau}+\left(a(s, \tau) a_{s}(s, \tau) v(s, \tau)\right)_{s}=f(s, \tau),(1)
$$

for all points (s, τ) of curvilinear characteristic triangles $\triangle M P Q \subset G$, and on its curvilinear characteristic sides $M P$ and $Q M$ under the Goursat conditions

$$
\begin{equation*}
v(s, \tau)=\gamma_{1}(s, \tau), s=h_{1}\left\{g_{1}(x, t), \tau\right\}, v(s, \tau)=\gamma_{2}(s, \tau), s=h_{2}\left\{g_{2}(x, t), \tau\right\} \tag{2}
\end{equation*}
$$

and at the intersection points $M(x, t)$ of these characteristics, the Goursat data matching condition

$$
\begin{equation*}
\gamma_{1}(x, t)=\gamma_{2}(x, t), \quad(x, t) \in G . \tag{3}
\end{equation*}
$$

Here the right-hand side f of the equation and the Goursat data γ_{1}, γ_{2} are given real functions of the variables s and τ, and the coefficient $a(s, \tau) \geqslant a_{0}>0,(s, \tau) \in G$, of the equation.

Equation (1) has differential characteristic equations $d s=(-1)^{i} a(s, \tau) d \tau, \quad i=1,2$, which correspond in G to two families of characteristics $\left.g_{i}(s, \tau)=C_{i}, C_{i} \in \mathbb{R}=\right]-\infty,+\infty[$, $i=1,2$. If the coefficient $a(s, \tau) \geqslant a_{0}>0,(s, \tau) \in G$, then the variable τ on the characteristic $g_{1}(s, \tau)=C_{1}, C_{1} \in \mathbb{R}$, strictly decreases, and on characteristic $g_{2}(s, \tau)=C_{2}$, $C_{2} \in \mathbb{R}$, strictly increases with s. Therefore, the implicit functions $y_{i}=g_{i}(s, \tau), s \in \mathbb{R}$, $t \geqslant 0$, have explicit strictly monotonic inverse functions $s=h_{i}\left\{y_{i}, \tau\right\}, \tau \geqslant 0$, and $\tau=h^{(i)}\left[s, y_{i}\right], s \in \mathbb{R}, \quad i=1,2$. By the definition of inverse functions, they satisfy the inversion identities from [1]:

$$
\begin{array}{cl}
g_{i}\left(h_{i}\left\{y_{i}, \tau\right\}, \tau\right)=y_{i} \forall y_{i}, & h_{i}\left\{g_{i}(s, \tau), \tau\right\}=s, \quad s \in \mathbb{R}, \quad i=1,2, \\
g_{i}\left(s, h^{(i)}\left[s, y_{i}\right]\right)=y_{i} \forall y_{i}, & h^{(i)}\left[s, g_{i}(s, \tau)\right]=\tau, \quad \tau \geqslant 0, \quad i=1,2, \\
h_{i}\left\{y_{i}, h^{(i)}\left[s, y_{i}\right]\right\}=s, s \in \mathbb{R}, \quad h^{(i)}\left[h_{i}\left\{y_{i}, \tau\right\}, y_{i}\right]=\tau, \quad \tau \geqslant 0, \quad i=1,2 .
\end{array}
$$

If the coefficient is $a \in C^{2}(G)$, then the functions $g_{i}, h_{i}, h^{(i)} \in C^{2}$ by $s, \tau, y_{i}, i=1,2,[1]$.
The concept of global correctness theorems with explicit solutions and Hadamard correctness criteria (necessary and sufficient conditions) of linear mixed problems was introduced in [2].

Theorem 1. Let the coefficient be $a(s, \tau) \geqslant a_{0}>0,(s, \tau) \in G, a \in C^{2}(G)$. In every triangle $\triangle M P Q \subset G$ the Goursat problem (1)-(3) has a unique and $f, \gamma_{1}, \gamma_{2}$-stable classical solution $v \in C^{2}(\triangle M P Q)$ if and only if $f \in C(G)$ and the smoothness requirements

$$
\begin{equation*}
H_{i}(s, \tau) \equiv \int_{0}^{\tau} f\left(h_{i}\left\{g_{i}(s, \tilde{\tau}), \tilde{\tau}\right\}, \tilde{\tau}\right) d \tilde{\tau} \in C^{1}(G), \quad i=1,2 \tag{4}
\end{equation*}
$$

For $\forall M(x, t) \in G$, this solution to the Goursat problem (1)-(3) in $\triangle M P Q \subset G$ is the function

$$
\begin{gather*}
v(s, \tau ; x, t)=\left\{\left.\left.\left[a(\tilde{s}, \tilde{\tau}) \gamma_{2}(\tilde{s}, \tilde{\tau})-F(\tilde{s}, \tilde{\tau})\right]\right|_{\tilde{s}=h_{2}\left\{g_{2}(x, t), \tilde{\tau}\right\}}\right|_{\tilde{\tau}=\tau_{1}\left(g_{1}(s, \tau)\right)}+\right. \\
+\left.\left[a(\tilde{s}, \tilde{\tau}) \gamma_{1}(\tilde{s}, \tilde{\tau})-F(\tilde{s}, \tilde{\tau})\right]\right|_{\tilde{s}=h_{1}\left\{g_{1}(x, t), \tilde{\tau}\right\} \mid \tilde{\tau}=\tau_{2}\left(g_{2}(s, \tau)\right)}- \tag{5}\\
\left.-\left.\left[a(\tilde{s}, \tilde{\tau}) \gamma_{2}(\tilde{s}, \tilde{\tau})-F(\tilde{s}, \tilde{\tau})\right]\right|_{\tilde{s}=h_{2}\left\{g_{2}(x, t), \tilde{\}}\right\}} \mid \tilde{\tau}=\tau_{1}\left(g_{1}(x, t)\right)+F(s, \tau)\right\} / a(s, \tau),(s, \tau) \in \Delta M P Q \subset G,
\end{gather*}
$$

where the particular classical solution of the equation (1) is the product of $1 / a(s, \tau)$ by

$$
F(s, \tau)=\frac{1}{2} \int_{0}^{\tau} d \tilde{\tau} \int_{h_{2}\left\{g_{2}(s, \tau), \tilde{\tau}\right\}}^{h_{1}\left\{g_{1}(s, \tau), \tilde{\tau}\right\}} f(\tilde{s}, \tilde{\tau}) d \tilde{s}
$$

$\tau_{1}(y), \tau_{2}(z)$ are inverse functions to functions

$$
y=g_{1}\left(h_{2}\left\{g_{2}(x, t), \tau\right\}, \tau\right), \quad z=g_{2}\left(h_{1}\left\{g_{1}(x, t), \tau\right\}, \tau\right) .
$$

Sketch of the proof. The Goursat problem (1)-(3) is solved by the characteristic method. To find the general integral of the equation (1) on G , in it we pass to new variables

$$
\begin{equation*}
\xi=g_{1}(s, \tau), \quad \eta=g_{2}(s, \tau) \tag{6}
\end{equation*}
$$

with non-degenerate Jacobian $J(s, \tau)=\xi_{s} \eta_{\tau}-\xi_{\tau} \eta_{s} \neq 0$ in G, since $a(s, \tau) \geqslant a_{0}>0,(s, \tau) \in G$. By replacing (6) the wave equation (1) for the new function $\tilde{v}(\xi, \eta)=v(s(\xi, \eta), \tau(\xi, \eta))$ reduced to canonical form

$$
\begin{equation*}
(\tilde{a}(\xi, \eta) \tilde{v}(\xi, \eta))_{\xi \eta}=\tilde{f}(\xi, \eta) /[2 J(s, \tau)],(\xi, \eta) \in \widetilde{G} \tag{7}
\end{equation*}
$$

where the coefficient $\tilde{a}(\xi, \eta)=a(s(\xi, \eta), \tau(\xi, \eta))$, the right-hand side $\tilde{f}(\xi, \eta)=f(s(\xi, \eta), \tau(\xi, \eta))$ and the set $\widetilde{G}=\left\{(\nu, \rho): h_{2}\{\rho, 0\} \leqslant h_{1}\{\nu, 0\}, \nu, \rho \in \mathbb{R}\right\}$.

Integrating equation (7) over the triangle $\triangle \tilde{M} \tilde{P} \tilde{Q} \subset \widetilde{G}$, we find its general integral

$$
\begin{equation*}
\tilde{a}(\xi, \eta) \tilde{v}(\xi, \eta)=\tilde{f}_{1}(\xi)+\tilde{f}_{1}(\eta)+\tilde{F}(\xi, \eta) \tag{8}
\end{equation*}
$$

where triangle $\triangle \tilde{M} \tilde{P} \tilde{Q}$ is the image of triangle $\triangle M P Q$ under mapping (6), the function \tilde{F} is

$$
\tilde{F}(\xi, \eta)=\frac{1}{2} \int_{g_{2}\left(h_{1}\{\xi, 0\}, 0\right)}^{\eta} d \rho \int_{g_{1}\left(h_{2}\{\rho, 0\}, 0\right)}^{\xi} \tilde{f}(\nu, \rho) J(\nu, \rho) d \nu
$$

$J(\xi, \eta)=s_{\xi} \tau_{\eta}-s_{\eta} \tau_{\xi} \neq 0$ is the Jacobian of the inversely replacing to variables (6) on the set \widetilde{G} and the product of these Jacobians is $J(\xi, \eta) J(s, \tau)=1$. From the general integral (8) by inverse replacement to variables (6) we derive the general integral of the equation (1)

$$
\begin{equation*}
v(s, \tau)=\left[\tilde{f}_{1}\left(g_{1}(s, \tau)\right)+\tilde{f}_{1}\left(g_{2}(s, \tau)\right)+F(s, \tau)\right] / a(s, \tau), \tag{9}
\end{equation*}
$$

where \tilde{f}_{1} and \tilde{f}_{2} are any twice continuously differentiable functions of ξ and η of the form

$$
\tilde{f}_{1}(\xi)=f_{1}(\xi)+f_{2}\left(g_{2}(x, t)\right), \quad \tilde{f}_{2}(\eta)=f_{2}(\eta)-f_{2}\left(g_{2}(x, t)\right)
$$

We substitute the general integral (9) into the Goursat conditions (2) and obtain the formal solution (5). Then we show the necessity and sufficiency of the smoothness $f \in C(G)$ and (4).

Corollary 1. If the right-hand side f of the equation (1) does not depend on s or τ in G, then the assertion of Theorem 1 is valid without integral smoothness requirements (4).

Here, for a continuous right-hand side f in τ or s smoothness (4) always holds.
Remark 1. In the case $F=0$, solution (5) serves as the Riemann function into Riemann formula of solutions to all mixed problems for the inhomogeneous model telegraph equation [3].

Aknowledgement. Supported by BRFFI (project No. F22KI-001 dated November 05, 2021).

Refrences

1. Lomovtsev F. E. The first mixed problem for the general telegraph equation with variable coefficients on the half-line // Zhurn. Belarusian. state university. Maths. Informatics. 2021. No 1. P. 18-38.
2. Lomovtsev F.E. Global Hadamard correctness theorem to the first mixed problem for the wave equation in a half-strip of the plane // Bulletin of Grodzensk Jarzhaunaga University named after Yanka Kupala. Ser. 2. Maths. Physics. Information, special equipment and kiravanne. 2021. V. 11. № 1. P. 68-82.
3. Lomovtsev F.E. Riemann Formula of the Classical Solution to the First Mixed Problem for the General Telegraph Equation with Variable Coefficients on the Half-Line // Tez. dokl. Seventh Bogdanov Readings on ordinary differential equations dedicated to the 100th anniversary of the birth of Professor Yu.S. Bogdanov (Minsk, June 1-4, 2021). Minsk, 2021. P. 201-203.
