A_2) существует вещественное отображение $k_0(t)$, удовлетворяющее при каждом $a \in \mathbb{R}_+$ условию $\int_0^a k_0(t)dt < \infty$, такое, что при любых $x_1, x_2 \in \mathbb{R}^d$, $y \in \mathbb{R}^r$ выполняется неравенство

$$||f(t,x_1,y) - f(t,x_2,y)||^2 + ||g(t,x_1,y) - g(t,x_2,y)||^2 \le k_0(t)||x_1 - x_2||^2||y||^2$$

 A_3) существует вещественное отображение $k_1(t)$, удовлетворяющее при каждом $a \in \mathbb{R}_+$ условию $\int_0^a k_1^2(t) dt < \infty$ такое, что при всех $t \in \mathbb{R}_+$ и любых $x \in \mathbb{R}^d$, $y \in \mathbb{R}^r$ выполняется неравенство

$$||f(t,x,y)|| + ||g(t,x,y)|| \le k_1(t)(1+||x||+||y||).$$

Условие A_3) означает, что функции f и g имеют линейный порядок роста по x и по y.

Теорема. Если отображения f и g удовлетворяют условию A), то для любого (\mathcal{F}_0) -измеримого случайного вектора $\eta(\omega)$ и любого непрерывного (\mathcal{F}_0) -согласованного случайного процесса $z(t,\omega)$, $t \in [0,1)$, удовлетворяющих условиям

$$E(\|\eta(\omega)\|^2) < \infty, \quad E(\int_0^1 \|z(t,\omega)\|^2 dt) < \infty,$$

cucmema (1)-(2) имеет единственное решение c начальными условиями (3).

Литература

1. Леваков А. А., Васьковский М. М. *Стохастические дифференциальные уравнения и включения*. Минск: БГУ, 2019.

ОБОБЩЕННЫЕ РЕШЕНИЯ СИСТЕМ НЕАВТОНОМНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ПРОСТРАНСТВАХ ЛЕБЕГА

А.И. Жук, Е.Н. Защук

Рассмотрим следующую задачу Коши на отрезке $T = [0, a] \subset \mathbb{R}$:

$$\dot{x}^{i}(t) = \sum_{j=1}^{q} f^{ij}(t, x(t)) \dot{L}^{j}(t), \quad i = \overline{1, p}, \tag{1}$$

с начальным условием $x(0)=x_0$, где f^{ij} , $i=\overline{1,p}$, $j=\overline{1,q}$, – некоторые функции, $x(t)=[x^1(t),x^2(t),...,x^p(t)]$, а $L^i(t)$, $i=\overline{1,q}$, – функции ограниченной вариации на отрезке T. Без ограничения общности будем считать, что функции $L^i(t)$, $i=\overline{1,q}$, непрерывны справа, $L^i(0)=L^i(0^-)=0$ и $L^i(a^-)=L^i(a)$, $i=\overline{1,q}$.

Задаче (1) поставим в соответствие следующую конечно-разностную задачу с осреднением

$$x_n^i(t+h_n) - x_n^i(t) = \sum_{i=1}^q f_n^{ij}(t, x_n(t)) [L_n^j(t+h_n) - L_n^j(t)], \quad i = \overline{1, p},$$
 (2)

с начальным условием $x_n(t)|_{[0,h_n)}=x_{n0}(t)$. Здесь

$$L_n^j(t) = (L^j *
ho_n^j)(t) = \int_0^{rac{1}{\gamma^j(n)}} L^j(t+s)
ho_n^j(s) \, ds,$$

где

$$\rho_n^j(t) = \gamma^j(n)\rho^j(\gamma^j(n)t),$$

$$\gamma^j(n)h_n o \infty$$
 для $j=\overline{1,b},$ $\gamma^j(n)h_n o 0$ при $j=\overline{b+1,q};$ $ho^j \geqslant 0,$ $\operatorname{supp}
ho^j \subseteq [0,1],$ $\int_0^1
ho^j(s)\,ds=1;$ $f_n=f*\widetilde{
ho}_n,$ $\widetilde{
ho}_n(x_0,x_1,...,x_p)=n^p\widetilde{
ho}(nx_0,nx_1,...,nx_p),$ $\widetilde{
ho}\in C^\infty(\mathbb{R}^{p+1}),$ $\widetilde{
ho}\geqslant 0,$ $\int_{[0:1]^{p+1}} \widetilde{
ho}(x_0,x_1,...,x_p)\,dx_0dx_1...dx_p=1,$ $\operatorname{supp} \widetilde{
ho}\subset [0;1]^{p+1}.$

Для описания предельного поведения решения задачи (2) рассмотрим систему

$$x^{i}(t) = x_{0}^{i} + \sum_{j=1}^{q} \int_{0}^{t} f^{ij}(s, x(s)) dL^{jc}(s) + \sum_{\mu_{r} \leqslant t} S^{i}(\mu_{r}, x(\mu_{r}^{-}), \Delta L(\mu_{r})), \quad i = \overline{1, p}, \quad (3)$$

где $L^{jc}(t)$ — непрерывная, а $L^{jd}(t)$ — разрывная составляющая функции $L^j(t)$, μ_r^j , $r=1,2,\ldots$ — точки разрыва функции $L^j(t)$, $\Delta L^j(\mu_r)=L^{jd}(\mu_r^+)-L^{jd}(\mu_r^-)$ — величина скачка, $S^i(\mu,x,u)=\varphi^i(1,\mu,x,u)-\varphi^i(0,\mu,x,u)$, а $\varphi^i(t,\mu,x,u)$ находится из уравнения

$$\varphi^{i}(t,\mu,x,u) = x^{i} + \sum_{j=1}^{b} u^{j} \int_{0}^{t} f^{ij}(\mu,\varphi(s^{-},\mu,x,u)) dH(s-1) +$$

$$+\sum_{j=b+1}^q u^j \int\limits_0^t f^{ij}ig(\mu, arphi(s,\mu,x,u)ig)\,ds, \quad i=\overline{1,p}, \quad j=\overline{1,q}.$$

Теорема. Пусть f^{ij} , $i=\overline{1,p}$, $j=\overline{1,q}$, удовлетворяют условию линейного роста и ограничены. $L^j(t)$, $j=\overline{1,b}$, – непрерывные справа функции ограниченной вариации. Тогда при $n\to\infty$, $h_n\to 0$, $\gamma^j(n)\to\infty$ так, что для $j=\overline{1,b}$ справедливо $\gamma^j(n)h_n\to\infty$, и для $j=\overline{b+1,q}$ выполняется $\gamma^j(n)h_n\to 0$, решение $x_n(t)$ задачи Коши (2) сходится к решению системы уравнений (3) в $L^p(T)$, если $\int |x_{n0}(\tau_t)-x_0|^p dt\to 0$.

Аналогичная теорема с другими условиями для функций f^{ij} была получена в [1].

Литература

1. Жук А. И., Яблонский О. Л., Спасков С. А. *Ассоциированные решения системы неавтономных* дифференциальных уравнений с обобщенными коэффициентами. Смешанный случай // Весці БДПУ. Сер. 3. Фізіка, матэматыка, інфарматыка, біялогія. геаграфія. 2019. № 4. С. 16–22.