УДК 624.012.15

ВЕРИФИКАЦИЯ ДЕФОРМАЦИОННОГО МЕТОДА РАСЧЕТА СЖАТЫХ АРМОКАМЕННЫХ ЭЛЕМЕНТОВ С УЧЕТОМ СП 5.02.01-2021 «КАМЕННЫЕ И АРМОКАМЕННЫЕ КОНСТРУКЦИИ»

Я. Н. МАЦКЕВИЧ, А. С. СТУК (Представлено: А. М. ХАТКЕВИЧ)

Рассматривается возможность применения деформационного метода расчета сжатых армокаменных элементов с учетом общих положений расчета, содержащихся в нормах проектирования СП 5.02.01-2021 «Каменные и армокаменные конструкции». На сформированной выборке данных получена хорошая сходимость экспериментальных и теоретических значений.

Введение. Деформационный метод расчета железобетонных элементов нашел широкое применение в проектировании и реализован в программном комплексе «Beta» (разработка д.т.н. Д.Н. Лазовского и к.т.н. Д.О. Глухова). Деформационный метод расчета сжатых армокаменных элементов, включающий алгоритмы вычисления параметров их напряженно-деформированного состояния на всех уровнях нагружения [1, 2, 3], позволяет выполнять расчеты армокаменных элементов в соответствии с СП 5.02.01 «Каменные и армокаменные конструкции» [4]. В то же время оценка возможности применения методики требует ее верификации на выборке экспериментальных данных.

Верификация метода расчета. Проверка методики выполнялась сопоставлением теоретических (полученных в программном комплексе «Beta») и экспериментальных значений сопротивления сжатию армокаменных элементов. Сопоставление проводилось с учетом процедур и статических методов обработки результатов испытаний приложения D к ТКП EN 1990 [5].

При сравнении экспериментальных и теоретических значений фактически измеренные параметры подставляются в функцию сопротивления для определения теоретического значения $N_{u,t}$, которое затем сравнивается с экспериментальными значениями $N_{u,exp}$. Пары соответствующих значений ($N_{u,t}$, $N_{u,exp}$) наносятся на диаграмму. Если функция сопротивления является полной и точной, то положение всех точек выпадает на прямую, лежащую под углом $\pi/4$.

Для каждого экспериментального значения N_{u,exp} определялась ошибка ⁰

$$\delta_i = \frac{N_{u,exp}}{b \cdot N_{u,e}}$$
(1)

где *b* – наилучшее приближение, определяемое методом «наименьших квадратов» и задаваемое выражением

$$\boldsymbol{b} = \frac{\sum N_{u,exp} N_{u,t}}{\sum N_{u,t}^2} \tag{2}$$

На основе всех полученных значений δ_{f} , вычислялось оценочное значение коэффициента вариации ошибок V_{f} с учетом того, что

$$\Delta_i = \ln(\delta_i) \tag{3}$$

Оценочное значение $\overline{\Delta}$ для $E(\Delta)$

$$\overline{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \Delta_i \tag{4}$$

Оценочное значение 🖧 для 🕰:

$$s_{\Delta}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\Delta_{i} - \overline{\Delta})^{2}$$
(5)

Коэффициент вариации Vs для вектора ошибок ⁶ определялся по формуле

$$V_{\delta} = \sqrt{\exp(s_{\Delta}^2) - 1}$$
(6)

В выборку экспериментальных исследований нами были включены данные по испытаниям коротких неармированных элементов и армокаменных элементов с продольным и поперечным армированием в горизонтальных растворных швах в виде сеток, полученные А. Г. Фигаровым [6] на опытных образцах из кладочных изделий из природного пиленого камня. Схемы армирования опытных образцов в исследованиях А. Г. Фигарова приведены на рис. 1, характеристика армирования образцов – в таблицах 1, 2.

1 – неармированная каменная кладка; 2 – продольная стальная арматура;
 3 – защитный штукатурный слой (раствор); 4 – мелкозернистый бетон;
 5 – кладка с поперечным армированием в горизонтальных растворных швах;
 а – серия Ф1–Ф3; *б* – серия Ф4; *в* – серия Ф5; *г* – серия Ф6 и Ф7

They now it Chemic up in pobulin of opticity of the it is it if the pobulo
--

Серия	Department of montrop (14)	Поперечное армирование		
	Размеры ооразцов (м)	Процент армирования (%)	Размер ячеек $a \times b$ (см)	
Φ0	0,4×0,4×1,2	-	_	
Φ1	0,4×0,4×1,2	0,270	12×12	
Ф2	0,4×0,4×1,2	0,656	5×5	
Ф3	0,4×0,4×1,2	1,090	3×3	

Таблица 1. – Характеристика опытных образцов серий ФО-ФЗ

Серия	Группа образцов	Размеры сечения (мм)		Экононтриситет	
			сжатой зоны	растянутой (менее сжатой) зоны	e ₀
	Ф4.1		_	2 Ø 11	<i>h</i> /6
Φ4	Ф4.2	400×400	-	2 Ø 11	h/2
	Φ4.3		-	2 Ø 11	h
	Φ5.1		-	7 Ø 12	<i>h</i> /6
Φ5	Φ5.2	400×400	-	7 Ø 12	h/2
	Φ5.3		_	7 Ø 12	h
Φ6	—	600×600	_	4 Ø 16	0
Φ7	_	600×600	_	4 Ø 25	0

Таблица 2. – Характеристика опытных образцов серий Ф4-Ф7

Данные экспериментальных $N_{u,exp}$ и теоретических $N_{u,t}$, полученных в программном комплексе «Веta», значений сопротивления сжатию приведены в таблице 3.

			~	י א ו	1
120114112 + SUDO1	NKA DESVELTATOR	кспериментальных исспеловани	и провеленных А Г	(DULADOBTIM)	61
raominga J. Dbioop	JRa pesymbratob	копериментальных неследовани	п, проведенных и.т.	. The apopping [V 1

	1 1 1	1			1
Серия	Номер образца	Фактические размеры <i>b×h×l</i> (мм)	ео (мм)	$N_{u,exp}$ (KH)	<i>N</i> _{<i>u</i>,<i>t</i>} (кН)
1	2	3	4	5	6
Φ1	Φ1.1	400×400×1200	0	746	769
	Ф1.2	400×400×1200	0	735	769
	Ф1.3	400×400×1200	0	708	769
Ф2	Ф2.1	400×400×1200	0	667	712
	Ф2.2	400×400×1200	0	764	712
	Ф2.3	400×400×1200	0	766	712

1	2	3	4	5	6
Ф3	Ф3.1	400×400×12700	0	763	811
	Ф3.2	400×400×1270	0	827	811
	Ф3.3	400×400×1270	0	717	811
	Φ4.1.1	400×420×1230	67	471	505
	Ф4.1.2	400×420×1230	67	589	505
	Ф4.1.3	400×420×1230	67	510	505
	Φ4.2.1	400×420×1230	200	235	278
Φ4	Φ4.2.2	400×420×1230	200	226	278
	Ф4.2.3	400×420×1230	200	256	278
	Φ4.3.1	400×420×1230	400	135	127
	Ф4.3.2	400×420×1230	400	129	127
	Φ4.3.3	400×420×1230	400	107	127
Φ5	Φ5.1.1	400×430×1230	67	500	448
	Φ5.1.2	400×430×1230	67	491	448
	Φ5.1.3	400×430×1230	67	471	448
	Φ5.2.1	400×430×1230	200	334	284
	Φ5.2.2	400×430×1230	200	353	284
	Φ5.2.3	400×430×1230	200	324	284
	Φ5.3.1	400×430×1230	400	205	183
	Φ5.3.2	400×430×1230	400	222	183
	Φ5.3.3	400×430×1230	400	192	183
Ф6	Ф6.1	600×600×1650	0	1466	1633
	Ф6.2	600×600×1650	0	1610	1633
	Ф6.3	600×600×1650	0	1713	1633
	Φ7.1	600×600×1650	0	1593	1694
Φ7	Φ7.2	600×600×1650	0	1469	1694
	Φ7.3	600×600×1650	0	1586	1694

Окончание таблицы 3

Диаграмма сравнения экспериментальных и теоретических значений сопротивления сжатию армокаменных образцов с учетом методики приложения D к ТКП EN 1990 [5] показана на рис. 2.

Заключение. Методика расчета сопротивления сжатию армокаменных элементов, реализованная в программном комплексе «Beta», позволяет рассчитывать элементы любой формы поперечного сечения без применения эмпирических правил и коэффициентов. Установлена хорошая сходимость экспериментальных и теоретических значений сопротивления сжатию армокаменных элементов – величина $V_{\delta} = 0.96$. Полученные результаты свидетельствуют о возможности применения деформационного метода расчета сопротивления сжатию армокаменных элементов, показывающего высокую сходимость теоретически рассчитанных параметров с экспериментальными и соответственно позволяющего учесть общие положения расчета СП 5.02.01-2021 «Каменные и армокаменные конструкции».

ЛИТЕРАТУРА

- 1. Хаткевич, А. М. Метод расчета прочности нормальных к продольной оси сечений конструкций из каменной кладки с учетом диаграмм деформирования / А. М. Хаткевич // Вестн. Полоц. гос. унта. Сер. F, Строительство. Прикладные науки. 2014. № 8. С. 45–53.
- 2. Глухов, Д. О. Метод расчета прочности сжатых каменных элементов по сечениям, нормальным к продольной оси / Д. О. Глухов, А. М. Хаткевич // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные науки. 2016. № 8. С. 73–79.
- 3. Лазовский, Д. Н. Расчет сопротивления сжатию каменных и армокаменных элементов с учетом физической нелинейности / Д. Н. Лазовский, А. М. Хаткевич // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные науки. 2017. № 16. С. 41–50.
- 4. Каменные и армокаменные конструкции. Строительные правила Республики Беларусь. СП 5.02.01-2021. – Введ. 01.04.2021. – Минск.: Минстройархитектуры, 2021. – 123 с.
- 5. Еврокод. Основы проектирования строительных конструкций = Еўракод. Асновы праектавання будаўнічых канструкцый : ТКП ЕN 1990-2011* (02250). Введ. 01.04.15. Минск : М-во архитектуры и стр-ва Респ. Беларусь, 2015. VIII, 86 с.
- Фигаров, А. Г. Прочность и упругие свойства неармированной и армированной кладки из пиленого известнякового камня Ашперонского полуострова / А. Г. Фигаров // Исследования по каменным конструкциям : сб. ст. / Акад. стр-ва и архитектуры СССР, Центр. науч.-исслед. ин-т строит. конструкций «ЦНИИСК» ; под ред. Л. И. Онищика. – М., 1957. – С. 248–268.