А. Ф. Оськин, **Δ**. **А**. Оськин

ВИРТУАЛЬНЫЕ МУЗЕЙНЫЕ КОМПОЗИЦИИ НА ОСНОВЕ ИНТЕЛЛЕКТ-КАРТ И ОНТОЛОГИЙ

Описывается новый алгоритм построения виртуальных музейных композиций. Отличительной особенностью разработанного алгоритма является использование прикладной онтологии как основы для построения виртуальной музейной композиции. При этом в качестве промежуточного формата представления онтологии используется интеллект-карта. В соответствии с разработанной методологией построена виртуальная музейная композиция «Художник Я. А. Мацеевская».

Интеллект-карты

Интеллект-карты, или карты разума (в данной области пока не сложилась устоявшаяся русскоязычная терминология), были предложены в середине 60-х гг. прошлого столетия английским психологом, специалистом по запоминанию больших объемов информации Тони Бьюзеном [1]. Английское название методики — Mind Mapping, т. е. методика создания Mind Maps, мозговое картографирование. Анализируя различные приемы запоминания, Бьюзен пришел к выводу, что эффективность запоминания существенно повышается, если удается представить рассматриваемый контент в виде графической схемы, карты, которую он и назвал Mind Map — интеллект-карта.

В центре большого листа бумаги (Бьюзен рекомендует пользоваться форматом не меньше А3) изображается произвольная фигура – круг, прямоугольник, овал и т. д., в поле которой вписывается основная, главная тема рассматриваемого контента. От основной темы отходят ветви подтем, каждая из которых имеет свое название – ключевое слово (или группа ключевых слов), определяющее содержание подтемы. Подтемы могут делиться на подподтемы, подподтемы – на подподподтемы и так далее – глубина детализации формально ничем не ограничивается и определяется разработчиком интеллект-карты, исходя из соображений наглядности и полноты представления информации. Также Бьюзен рекомендует использовать разные цвета для разных ветвей и сопровождать каждую ветвь лаконичным рисунком, пиктограммой, связанной с содержанием. Многочисленные эксперименты, проведенные Бьюзеном и его последователями, показали высокую эффективность такого представления информации.

Интеллект-карты могут быть использованы для построения виртуальных музейных композиций в качестве инструментальных средств создания контента. Современные средства построения интеллект-карт позволяют создавать гипертекстовые структуры — системы интеллект-карт, связанных в единое целое гипертекстовыми ссылками.

Таким образом, коллекция интеллект-карт, соответствующая существующей музейной композиции, может быть преобразована в профессионально оформленную веб-страницу, посвященную данной композиции. Соответствующий инструментарий позволяет осуществить такое преобразование без изучения языков разметки веб-страниц, просто выполнив конвертацию гипертекстовой интеллект-карты в нужный формат.

Отметим также, что некоторые системы управления обучением, например система ATutor, позволяют внедрять интеллект-карты в страницы электронных учебников, создаваемые с помощью имеющихся в этих системах редакторов учебного контента.

Это важное преимущество системы управления обучением ATutor, выбранной нами в качестве оболочки для построения информационно- образовательной среды музея.

Инструментарий для создания интеллект-карт

Разрабатывая технологию Mind Mapping, Т. Бьюзен ориентировался на построение интеллект-карт вручную. До настоящего времени Центр Бьюзена в Великобритании выпускает наборы майндмэпера – планшеты с листами бумаги форматом А3, комплектом фломастеров и лекал для вычерчивания интеллект- карт.

Однако начиная с середины 90-х гг. в продаже стали появляться программные продукты, ориентированные на построение интеллект-карт. Сначала это были расширения стандартных графических пакетов. Например, широко распространенное приложение MS Visio содержит вкладку Mind Mapping Diagram Shapes, позволяющую строить интеллект-карты.

Гораздо большими возможностями обладают специализированные программные пакеты, предназначенные для создания, хранения, редактирования и преобразования интеллект-карт. Наиболее ярким и интересным представителем этого класса программных продуктов является, на наш взгляд, пакет Mind Manager, выпускаемый американской компанией MindJet (http://www.mindjet.com).

Разработчики пакета определяют Mind Manager как визуальный инструментарий с интуитивно понятным интерфейсом, предназначенный для быстрого накопления, организации и структурирования идей и информации. Создание новой карты выполняется быстро и легко – щелчками по соответствующим клавишам. При этом возможны два основных режима построения карты – стандартный режим и режим мозгового штурма. Карта, построенная в стандартном режиме, может быть в дальнейшем использована как презентация. Карта мозгового штурма позволяет управлять процессом группового генерирования новых идей, а также записывать и сохранять все действия участников мозгового штурма.

Созданная карта может быть экспортирована во все офисные приложения Microsoft Word, PowerPoint, Visio, Outlook. Возможна синхронизация созданной карты с приложениями MS Project и MS Outlook Tasks. Как уже отмечалось выше, карта может быть сохранена в виде веб-страницы, pdf-документа или картинки.

Существует возможность создания гипертекстовых карт, представляющих собой системы из отдельных карт, связанных между собой гипертекстовыми ссылками в единое целое.

Таким образом, применение пакета Mind Manager при проектировании и создании карты позволяет выполнить этот процесс быстро и качественно, предоставляя разработчику такие возможности, которые недоступны при ручном проектировании.

Онтологии

Под онтологией в информатике понимается формальное явное описание терминов предметной области и отношений между ними [2].

Википедия, интернет-энциклопедия, дает следующую трактовку этого термина:

«Онтология (в информатике) — это попытка всеобъемлющей и детальной формализации некоторой области знаний с помощью концептуальной схемы. Обычно такая схема состоит из иерархической структуры данных, содержащей все релевантные классы объектов, их связи и правила (теоремы, ограничения), принятые в этой области».

Онтология является универсальным способом представления информации о предметной области, позволяющим:

- ▶ использовать информацию из базы знаний как людьми, так и программными агентами, что позволяет автоматизировать поиск информации, ответы на запросы пользователей и т. д.;
 - > повторно использовать знания, накопленные в базе знаний;
- ▶ выполнять анализ знаний в предметной области, совершенствовать структуру и содержание базы знаний;
 - > сделать явными допущения в предметной области;
 - отделять знания в предметной области от оперативных знаний.

Перечисленные достоинства онтологий дают возможность сформировать на их основе виртуальные музейные композиции с высокими потребительскими характеристиками.

Алгоритм построения виртуальных музейных композиций на основе интеллект-карт и онтологий

Нами разработан и апробирован следующий алгоритм построения виртуальных музейных композиций:

- **Шаг 1.** Создание онтологии музейной композиции.
- **Шаг 2.** Генерация интеллект-карты музейной композиции из созданной онтологии.
- **Шаг 3.** Генерация виртуальной музейной композиции из созданной интеллект-карты.
- **Шаг 4.** Генерация твердой копии каталога музейной композиции.
- **Шаг 5.** Загрузка виртуальной музейной композиции в информационно-образовательную среду музея. Рассмотрим подробнее процедуры, выполняемые на отдельных шагах алгоритма.

Создание онтологии музейной композиции

Онтология создается с помощью одного из известных редакторов онтологий. Мы не будем останавливаться на технологии ее создания, так как она достаточно полно описана в целом ряде статей и книг. Отметим только, что в области документирования культурного наследия в настоящее время ведутся интенсивные работы по созданию формальных онтологий. Так, создана онтология CIDOC CRM («Committee on Documentation» «Conceptual Reference Model»), предназначенная для улучшения интеграции и обмена гетерогенной информацией по культурному наследию. Более конкретно, CIDOC CRM определяет семантику схем баз данных и структур документов, используемых в культурном наследии и музейной документации, в терминах формальной онтологии. Модель не определяет терминологию, появляющуюся в конкретных структурах данных, но имеет характерные отношения для ее использования.

Модель может служить как руководством для разработчиков информационных систем, так и общим языком для экспертов предметной области и специалистов по информационным технологиям. Она предназначена для покрытия контекстной информации исторического, географического и теоретического характера об отдельных экспонатах и музейных коллекциях в целом. Мы использовали классы онтологии CIDOC CRM при разработке прикладной онтологии тематической музейной композиции.

Генерация интеллект-карты виртуальной музейной композиции из созданной онтологии

Как было показано выше, интеллект-карта является эффективным и удобным средством представления контента. Поэтому мы решили использовать интеллект-карты в качестве промежуточного инструмента для перехода от онтологии к информационно-образовательной среде и ведем работы по созданию программного обеспечения, позволяющего генерировать интеллект- карты из онтологий, сохраненных в стандартных форматах.

Генерация виртуальной музейной композиции из созданной интеллект-карты

Сгенерированная на предыдущем шаге интеллект-карта загружается в соответствующий редактор. Дальнейшая работы выполняется штатными средствами редактора. Интеллект-карта, после необходимых настроек и установок, экспортируется и сохраняется в виде веб-страницы, представляющей собой виртуальную музейную композицию.

Генерация твердой копии каталога музейной композиции

Этот шаг подобен предыдущему. В отличие от предыдущего шага, интеллект-карта экспортируется и сохраняется в формате текстового документа, например в виде документа текстового процессора Microsoft Word.

Загрузка виртуальной музейной композиции в информационнообразовательную среду музея

Завершающим этапом построения виртуальной музейной композиции является загрузка созданной веб-страницы в базу системы управления обучением.

Пример построения виртуальной музейной композиции на основе описанного алгоритма

Проиллюстрируем описанный алгоритм примером построения виртуальной музейной композиции по теме «Художник Я. А. Мацеевская».

Я. А. Мацеевская (1916–1996) – правнучка известного белорусского художника И. Ф. Хруцкого; художник; 720 ее работ хранятся в фондах Национального Полоцкого историко-культурного музея-заповедника.

Для создания онтологии нами был использован редактор онтологий Protege, разработанный университетской исследовательской группой под руководством Марка Мьюсена из Стэндфордского университета. Редактор является свободно распространяемым программным обеспечением и может быть скачен с сайта разработчиков по адресу http://protege.stanford.edu/.

Для создания интеллект-карты мы использовали профессиональный редактор интеллект-карт Mind Manager Pro 7.0. Интеллект-карта построенной онтологии, созданная в редакторе Mind Manager Pro 7.0, представлена на рис. 1.

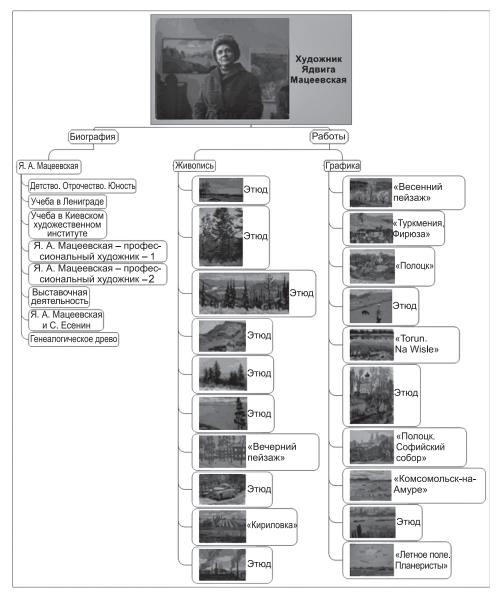


Рис. 1. Интеллект-карта онтологии

Виртуальная музейная композиция генерируется с помощью штатных средств приложения Mind Manager. Для генерации твердой копии каталога нами также использовались штатные средства приложения Mind Manager. Mind-карта дисциплины была экспортирована и сохранена в формате Microsoft Word 2007.

Заключение

Таким образом, предлагаемый алгоритм открывает широкие возможности по созданию, применению и повторному использованию виртуальных музейных композиций. Применение онтологий повышает универсальность разработанных композиций, а использование Mind Manager позволяет улучшить потребительские качества создаваемых материалов и существенно сократить время на их разработку.

Литература

- 1. Бьюзен, Т. Супермышление / Т. Бьюзен, Б. Бьюзен. Минск : Попурри, 2003. 343 с.
- 2. *Gruber, T. R.* A Translation Approach to Portable Ontology Specification / Knowledge Acqusition. − 1993. − № 5. − P. 199–220.

Оськин Аркадий Филиппович, доцент кафедры технологий программирования Полоцкого государственного университета, кандидат технических наук, доцент, oskin45@gmail.com

Оськин Дмитрий Аркадьевич, преподаватель кафедры технологии и методики преподавания Полоцкого государственного университета, магистр технических наук, dimozzio@gmail.com