• Published: 13 September 2022

Choice of Activation Function in Convolutional Neural Networks for Person Re-Identification in Video Surveillance Systems

- <u>H. Chen</u>,
- <u>S. Ihnatsyeva</u>,
- <u>R. Bohush</u>
- <u>S. Ablameyko</u>

Programming and Computer Software volume 48, pages312–321 (2022)Cite this article

Abstract

In this paper, we improve the accuracy of person re-identification in images obtained from distributed video surveillance systems by choosing activation functions for convolutional neural networks. The most popular activation functions used for object detection, namely, ReLU, Leaky-ReLU, PReLU, RReLU, ELU, SELU, GELU, Swish, and Mish, are analyzed based on the following metrics: Rank1, Rank5, Rank10, mAP, and training time. For feature extraction, ResNet-50, DenseNet-121, and DarkNet-53 architectures are employed. The experimental study is carried out on open datasets Market1501 and PolReID. The accuracy of person re-identification is assessed after thrice-repeated training and testing with different activation functions, neural network architectures, and datasets by averaging the values of the selected metrics.

This is a preview of subscription content, access via your institution.

REFERENCES

 Ye, S., Bohush, R.P., Chen, H., et al., Person tracking and reidentification for multicamera indoor video surveillance systems, *Pattern Recognit. Image Anal.*, 2020, vol. 30, pp. 827– 837. <u>https://doi.org/10.1134/S1054661820040136</u>

Article Google Scholar

- 2. Porrello, A., Bergamini, L., and Calderara, S., Robust re-identification by multiple views knowledge distillation, 2020.
- 3. Huang, G., Liu, Z., and Weinberger, K.Q., Densely connected convolutional networks, *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)*, 2017, pp. 2261–2269.
- 4. Wang, G., Lai, J., Huang, P., and Xie, X., Spatial-temporal person reidentification, 2019.
- 5. Mao, S., Zhang, S., and Yang, M., Resolution-invariant person reidentification, 2019.
- 6. Redmon, J. and Farhadi, A., YOLOv3: An incremental improvement, 2018.
- 7. Nair, V. and Hinton, G.E., Rectified linear units improve restricted Boltzmann machines, *Proc. ICML*, 2010, pp. 807–814.
- 8. Maas, A.L., Rectifier non linearities improve neural network acoustic models, *Proc. ICML*, 2013, vol. 30.
- 9. Xu, B., Wang, N., Chen, T., and Li, M., Empirical evaluation of rectified activations in convolutional network, 2015.
- 10. Clevert, D., Unterthiner, T., and Hochreiter, S., Fast and accurate deep network learning by exponential linear units (ELUs), 2016.
- 11. Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S., Selfnormalizing neural networks, 2017.
- 12. Hendrycks, D. and Gimpel, K., Bridging nonlinearities and stochastic regularizers with Gaussian error linear units, 2016.
- 13. Ramachandran, P., Zoph, B., and Le, Q.V., Swish: A self-gated activation function, 2017.
- 14. Misra, D., Mish: A self regularized non-monotonic neural activation function, 2019.
- 15. Zheng, L., Shen, L., Tian, L., Wang, Sh., Wang, J., and Tian, Q., Scalable person re-identification: A benchmark, *Proc. IEEE Int. Conf. Computer Vision (ICCV)*, 2015, pp. 1116–1124.
- 16. Ihnatsyeva, S., Bohush, R., and Ablameyko, S., Joint dataset for CNNbased person re-identification, *Proc. 15th Int. Conf. Pattern Recognition and Information Processing (PRIP)*, Minsk, Minsk: Ob"edinennyi Inst. Probl. Inf. Nats. Akad. Nauk Belarusi, 2021, pp. 33–37.
- 17. Ihnatsyeva, S. and Bohush, R., PolReID. https://github.com/SvetlanaIgn/PolReID.
- 18.Bochkovskiy, A., Wang, Ch.-Y., and Liao, H.-Y.M., YOLOv4: Optimal speed and accuracy of object detection, 2020.
- 19.GitHub, Person reID baseline pytorch. https://github.com/layumi/Person_reID_baseline_pytorch.

Download references

ACKNOWLEDGMENTS

This work is partially supported by the National High-end Foreign Experts Program (G2021016028L and G2021016002L) and Zhejiang Shuren University Basic Scientific Research Special Funds.

Author information

Authors and Affiliations

- **1. Zhejiang Shuren University, Shuren Str. 8, Hangzhou, China** H. Chen
- 2. International Science and Technology Cooperation Base of Zhejiang Province: Remote Sensing Image Processing and Application, Shuren Str. 8, Hangzhou, China H. Chen
- **3. Polotsk State University, ul. Blokhina 29, 211446, Novopolotsk, Belarus** S. Ihnatsyeva & R. Bohush
- **4. Belarusian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus** S. Ablameyko
- 5. United Institute of Informatics Problems, National Academy of Sciences of Belarus, ul. Surganova 6, 220012, Minsk, Belarus

S. Ablameyko

Corresponding authors

Correspondence to <u>H. Chen</u> or <u>R. Bohush</u>.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Kornienko

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, H., Ihnatsyeva, S., Bohush, R. *et al.* Choice of Activation Function in Convolutional Neural Networks for Person Re-Identification in Video Surveillance Systems. *Program Comput Soft* **48**, 312–321 (2022). https://doi.org/10.1134/S0361768822050036

Download citation

- Received25 February 2022
- Revised18 April 2022
- Accepted17 May 2022
- Published13 September 2022
- Issue DateOctober 2022
- DOIhttps://doi.org/10.1134/S0361768822050036

<u>Choice of Activation Function in Convolutional Neural Networks for Person Re-Identification in Video</u> <u>Surveillance Systems | SpringerLink</u>