Секция 2 МЕТОДЫ И ТЕХНОЛОГИИ МАТЕМАТИЧЕСКОГО И ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ СИСТЕМ

УДК 681.3.05

АЛГОРИТМ ПОИСКА ЭКСТРЕМУМА МУЛЬТИМОДАЛЬНЫХ ЦЕЛЕВЫХ ФУНКЦИЙ

канд. техн. наук, доц. А. Ф. ОСЬКИН (Полоцкий государственный университет, Беларусь);

Д. А. ОСЬКИН

(Белорусский государственный экономический университет, Минск)

Аннотация. Предлагается новый алгоритм численного поиска экстремума мультимодальных целевых функций. Он относится к многочисленной группе алгоритмов искусственного интеллекта, объединенных общим названием — «Алгоритмы роевого интеллекта». Приводится описание реализации алгоритма в виде консольного приложения на языке программирования С++, а также результаты численных экспериментов по поиску с помощью разработанного приложения экстремумов тестовых функций из библиотеки тестовых функций для оптимизации.

Методы роевого интеллекта — группа итеративных методов, моделирующих поведение организованной колонии насекомых. В ряде работ [1–3] показано, что с помощью этих методов возможно нахождение решения, близкого к оптимальному за приемлемое время. Этим и объясняется популярность этих методов при решении NP — сложных задач, для которых точные алгоритмы поиска решения известны, но неприемлемы из-за своих временных характеристик. Мы проанализировали три роевых алгоритма — метод роя частиц, метод пчелиного роя и метод светлячков — и разработали простой алгоритм, который при проведении численных экспериментов показал вполне приемлемые результаты.

Алгоритм состоит из следующих шагов.

- **Шаг 1.** Генерация роя частиц, случайным образом рассеянных по области поиска решения.
- **Шаг 2.** Определение «лучшей» частицы, т.е. частицы, для которой значение целевой функции наиболее близко к экстремуму.
- **Шаг 3.** Для каждой из частиц роя определение расстояния между нею и «лучщей» частицей.

Шаг 4. Для каждой из частиц роя определение направления смещения — по кратчайшему пути в сторону «лучшей» частицы.

Шаг 5. Для каждой из частиц роя расчёт нового положения в соответствии с формулой

$$X_i(t+1) = X_i(t) + k \cdot \Delta X_i,$$

где $X_i(t+1)$ – координаты i-й частицы на t+1 шаге итерационного процесса;

 $X_i(t)$ — координаты i-й частицы на предыдущем шаге итерационного процесса;

k — эмпирический коэффициент;

 ΔX_i – смещение *i*-й частицы по всем координатным осям.

Шаг 6. Определение новой «лучшей» частицы.

Шаг7. Если не выполнено запланированное число итераций — переход на шаг 3. Иначе -переход на шаг 8.

Шаг 8. Вывод координат «лучшей» частицы.

Шаг 9. Конец.

Для проверки работоспособности и эффективности алгоритма, нами написано консольное приложение, реализующее описанный алгоритм. Использовался язык C++. Некоторые результаты численных экспериментов с приложением приводятся ниже. Мы пользовались библиотекой тестовых функций, размещённой по адресу http://www.sfu.ca/~ssurjano. Для решения задачи оптимизации использовался рой из 20 частиц. Значение эмпирического коэффициента во всех расчетах, результаты которых здесь приводятся, принималось равным 1,5.

Результаты моделирования. Целевая функция – функция Растригина

$$f(x1,x2) = 20 + [x1^2 - 10 \cdot \cos(2 \cdot \pi \cdot x1)] + [x2^2 - 10 \cdot \cos(2 \cdot \pi \cdot x2)].$$

Это мультимодальная с несколькими локальными минимумами. Глобальный минимум достигается в точке [0, 0].

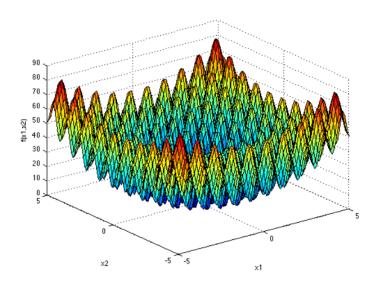


Рисунок 1. - Функция Растригина

Таблица 1. – Изменение положения частиц в процессе поиска экстремума для функции Растригина

	. , .		•								
		Первые десять частиц роя									
X1	4,00	-1,00	1,00	1,00	-3,00	5,00	-3,00	-2,00	0,00	2,00	Исходное расположение частиц
X2	-5,00	1,00	-1,00	-4,00	4,00	5,00	-5,00	0,00	3,00	5,00	
X1	-2,00	0,50	-0,50	-0,50	1,50	-2,50	1,50	1,00	0,00	-1,00	Первая итерация
X2	1,00	-2,00	-1,00	0,50	-3,50	-4,00	1,00	-1,50	-3,00	-4,00	
X1	1,00	-0,25	0,25	0,25	-0,75	1,25	-0,75	-0,50	0,00	0,50	Третья итерация
X2	-2,00	-0,50	-1,00	-1,75	0,25	0,50	-2,00	-0,75	-1,03	0,50	
X1	0,25	-0,06	0,06	0,06	-0,19	0,31	-0,19	-0,13	0,00	0,13	Пятая итерация
X2	-0,50	-0,13	-0,25	-0,44	0,06	0,13	-0,50	-0,19	0,00	0,13	

Целевая функция – функция Била

$$f(x_1,x_2) = (1,5-x_1+x_1\cdot x_2)^2 + (2,25-x_1+x_1\cdot x_2)^2 + (2,625-x_1+x_1\cdot x_2)^2$$

Функция Била – мультимодальная, с резкими подъёмами по углам области определнния. Глобальный минимум достигается в точке [3, 0,5] и равен нулю.

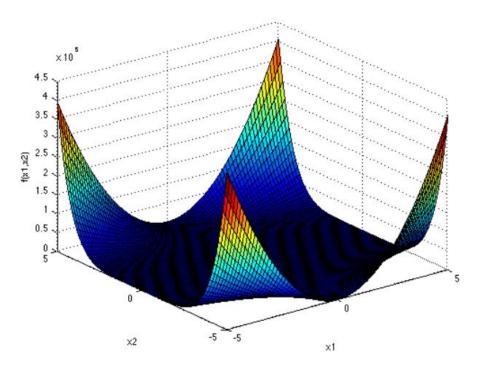


Рисунок 2. – Функция Била

Таблица 2. – Изменение положения частиц в процессе поиска экстремума для функция Била.

	Первые десять частиц роя										
X1	0,00	-2,00	3,00	-3,00	2,00	-2,00	1,00	3,00	4,00	3,00	Исходное
X2	1,00	-1,00	1,00	-3,00	1,00	3,00	-1,00	4,00	0,00	1,00	расположение частиц
X1	1,50	2,50	0,00	3,00	0,50	2,50	1,00	0,00	-0,50	0,00	- Первая итерация
X2	-2,00	-1,00	-2,00	0,00	-2,00	-3,00	-1,00	-3,50	-1,50	-2,00	
X1	3,00	3,25	2,63	3,38	2,75	3,25	2,88	2,63	2,50	2,63	Третья итерация
X2	0,25	0,50	0,25	0,75	0,25	0,00	0,50	-0,13	0,38	0,25	
X1	2,91	2,97	2,81	3,00	2,84	2,97	2,88	2,81	2,78	2,81	Пятая итерация
X2	0,44	0,50	0,44	0,56	0,44	0,38	0,50	0,34	0,47	0,44	

Выводы

- 1. Несмотря на простоту, алгоритм оказался достаточно эффективен и позволяет получать вполне приемлемые результаты.
- 2. К недостаткам алгоритма следует отнести редкие, но тем не менее имеющие место случаи попадания частиц в локальные экстремумы.
- 3. Для устранения этого недостатка, по аналогии с методом роя частиц, мы предполагаем ввести дополнительные рандомизированные эмпирические коэффициенты.

ЛИТЕРАТУРА

- 1. «Particle Swarm Optimization». Proceedings of IEEE International Conference on Neural Networks IV: 1942-1948.
- 2. Kennedy, J.; Eberhart, R.C. Swarm Intelligence Morgan Kaufmann, 2001. ISBN 1-55860-595-9.
- 3. Poli, R. An analysis of publications on particle swarm optimisation applications (англ.) // Technical Report CSM-469: journal. Department of Computer Science, University of Essex, UK, 2007.