MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017
ITC, Electronics, Programming

UDC 004.9+004.056
INTEGRATED WINDOWS AUTHENTICATION IN WEB APPLICATIO NS

DMITRY SAVCHENKO, OKSANA GOLUBEVA, TATYANA CHERNYAK
Polotsk State University, Belarus

The paper discusses a method of transparent usireatication within a web application running in
an internal network organized into a domain by nseahMicrosoft Active Directory.

A web application typically needs to function diféetly for different users and to process spedifta
for every user. This requires that the web appboais aware of which user interacts with it ani tknowledge
should be confirmed to be correct. This leads éoréguirement of a user to authenticate beforéirsgato inter-
act with the application. A typical approach foistis so that at first the user should registethm application,
thus, creating personal credentials, such as @seemnd password, and then as the first step of aweraction
session the user is required to prove his or hentity by providing the credentials via aweb form.
An alternative approach would be to rely on a #gdsthird party to provide user authentication. Téés be
achieved by leveraging OAuth 2.0 protocol [1, 2btitain access token to the third-party service REBI [3]
and then makinga subsequent API request to obtaime suser identifier and in this way authenticat tiser.
This approach requires the user to be registerédcathenticated within the third-party web service.

The two authentication approaches described ab@venastly suitable and, thus, widely used by global
web applications available worldwide in the intdrridowever, a lot of web services can be instatiagprivate
servers and used in internal networks of some dagtons. These can be privately developed apjdicat
and/or applications that process business-sensitieemation that should not be let outside thesinal net-
work. While methods of web form authentication &lnidd-party authentication can still be used byinal web
applications, they are typically redundant in saaekes. A user has already been authenticated vathaniza-
tion network when logging in to his or her comput®miost often Microsoft Active Directory [4] is uséadl organ-
ize network domain) and the best solution is far ititernal web application to transparently auticatg such
a user without asking him or her for credentialp@rforming communication with a third party.

The Generic Security Service Application Progranerface (GSS-API) is a security services standard,
that defines a generic interface for callers to enedquests to underlying security services [5]. @bénitive
concept of GSS-API usage is the exchange of opatpssages (they are called “tokens”) which hidertipe-
mentation detail from the higher-level applicatidime client and server sides of the applicationvarigen to
convey the tokens given to them by their respecB&S-API implementations. GSS-API tokens can uguall
travel over an insecure network as the mechanisimgde inherent message security. After the exchanify
some number of tokens, the GSS-API implementatiimth ends inform their local application thaegurity
context has been established.

The Microsoft Security Support Provider Interfa&SPl) is the well-defined common API for obtaining
integrated security services for authenticationssage integrity, message privacy, and securityityualservice
for any distributed application protocol [6]. SSRrtially confirms with GSS-API interface while hag some
Windows-specific extensions. A single implementataf SSPI is called a security service package. S&PI
allows an application to use any of the availakleusity packages on a system without changingrttezface to
use security services. Microsoft Windows providesesal security packages, NTLM (NT LAN Manager) and
more progressive Kerberos are among them. A hilglvel package Negotiate is also provided: it dagdefine
different security service implementation, but ssras a decorator for NTLM and Kerberos insteadjohigte
package allows communication parties to select éetvKerberos and NTLM depending on which of these t
is supported by both parties, considering Kerbamoa preferred one.

The Hypertext Transfer Protocol (HTTP) providesnapde and generic challenge-response authentication
mechanism which may be used by a server to chalangient request and by a client to provide anttbation
information [7]. This mechanism allows various sfiedmplementations that leverage different autieation
techniques. Authentication information challengiagione by a server with th&WW-Authenticatbeader and
response cod€01 (unauthorized). Providing authentication inforroatby a client is achieved with tiauthori-
zationheader.

The GSS-API standard, SSPI interface and its NTKktberos and Negotiate implementations alongside
with HTTP authentication mechanism together provigeans for implementing integrated windows autloanti
tion for web applications that operate within a @éws network domain. This can be achieved by |l&ieta
HTTP Negotiate Authentication scheme [8]. This sobeadefines authentication protocol in terms of G$3-
and can be mapped to the terms of the SSPI Negqi@tkage implementation. According to this schethm,
following protocol of data exchange is used byrdliand server application. When the server recevesjuest

315

MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017
ITC, Electronics, Programming

for a resource that is access-protected and aptatde Authorization header has not been sentsdheer re-
sponds with a 401 (unauthorized) status code andsse WWW-Authenticate header denoting “Negotias’
a required authentication schema. No gss-api dgteovided in the header of the initial responsgotreceipt
of the response containing WWW-Authenticate heattierclient is expected to retry the previous retjusend-
ing Authorization header along with it. The headbould denote “Negotiate” as a used authenticaahema
along with base64-encoded [9] gss-api data. Theagsslata should contain security context tokertaioled
from the client system GSS-API implementation (SSIRhotiate security package). The server then iises
system GSS-API implementation to validate securitytext token received and, thus, authenticateisee The
server then returns the requested resource with(@ress) status code; WWW-Authenticate header lmeay
also sent containing server security context takenutual authentication is required. Depending@8S-API
implementation there may be multiple legs of seégudken exchange between the client and the server

The following can be seen as an example of negodiathentication.

The client requests an access-protected resouncetfre server via HTTP GET method request:

Client: GET example/path/document.html

Since no Authorization header is sent by the clidm server should response with the requestuitrea-

tication:

Server: HTTP/1.1 401 Unauthorized
Server: WWW-Authenticate: Negotiate

The client then is required to obtain user cre@dntisingGSS_Init_sec_contegall. In terms of SSPI the
client should first calAcquireCredentialsHandl&nction to obtain Negotiate security package entidls han-
dle (client credentials hand)e and then cdlhitializeSecurityContexipassing client credentials handle as
an argument and receiving first part of the segwidintext data. This context is then base64-encadedsent to
the server:

Client: GET example/path/document.html
Client: Authorization: Negotiate Y2xpZOUW5IZ290aWF0==

Upon receiving the request, the server should awdidthe client security context data using
GSS_Accept_sec_contestl. In terms of SSPI it should as well first aiot Negotiate security package creden-
tials handle gerver credentials handléy calling AcquireCredentialsHandland then calAcceptSecurityCon-
text passing server credentials handle and the clemirgy context data as arguments. HoeeptSecurityCon-
textfunction returns the status (whether the passedtcéecurity context is valid, invalid or not colefe) and
the server security context data that should beguhto the client in WWW-Authenticate header. B tHient
security context is incomplete, the server shoeldirn 401 (unauthorized) header along with basegéded
server security context:

Server: HTTP/1.1 401 Unauthorized
Server: WWW-Authenticate: NeghotiatéycnVyLWNvbnRIeHQ=

The client should decode received server secunityext data and pass it @SS _Init_sec_contegall. In
terms of SSPI the data along with previously aaliclient credentials handle is passednitalizeSecurity-
Contextcall. The second part of client security contedeived from the function call is then base64-eedod
and sent to the server:

Client: GET example/path/document.htmi
Client: Authorization: Negotiate c2VHE - WNsaWVudC1jb250ZXh0

This cycle continues until the security context demplete. When the return value from the
GSS_accept_sec_contéumction @AcceptSecurityConteitt terms of SSPI) on the server indicates thattui-
rity context is complete, it may supply final autkieation data to be returned to the client. K gerver has
more gss-api data to send to the client to compifiteontext, it is to be carried in a WWW-Autheate header
with the final response containing the HTTP body.fially, the server returns 200 (success) statae along
with the final part of the gss-api data and thauestied document body:

Server: HTTP/1.1 200 Success

Server: WWW-Authenticate: NeghotiatéuXtwwtc2VydmWLWNvbnRIeHQ=
Server:

Server: <IDOCTYPE html>

Server: <html>

Server: <head>

Server: ...

Since Negotiate Authentication Scheme is suppdriedll major web browsers, described technique al-
lows to perform fully transparent user authentmatiThe user neither needs to register within thé applica-
tion, nor is required to supply his or her credsstbefore being able to use the application. Téer gimply
navigates to the required URI via a web browsethentication is then performed automatically inealse
manner, and the user gets recognized by the afiphicand is able to interact with it.

316

MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017

ITC, Electronics, Programming
REFERENCES

RFC 6749 — The OAuth 2.0 Authorization Frameworkeffronic Resource] / Dick Hardt. — Mode of
access: https://tools.ietf.org/pdf/rfc6749.pdf. at®of access: 20.01.2017.

RFC 6750 — The OAuth 2.0 Authorization FrameworkaBer Token Usage [Electronic Resource] / Mi-
chael B. Jones, Dick Hardt. — Mode of access: fittpsls.ietf.org/pdf/rfc6750.pdf. — Date of access
20.01.2017.

Fielding, Roy. Architectural Styles and the DesidgriNetwork-based Software Architectures / Roy Thema
Fielding; University of California. — Irvine, 2006—- 162 p.

Active Directory [Electronic Resource] / MicrosoftCorporation. — Mode of access:
https://msdn.microsoft.com/en-us/library/bb74248dxa — Date of access: 20.01.2017.

RFC 2743 — Generic Security Service ApplicationdgPam Interface Version 2, Update 1 [Electronic Re-
source] / John Linn. — Mode of access: https:/goetf.org/pdf/rfc2743.pdf. — Date of access: 2(R017.

The Security Support Provider Interface [ElectraR&source] / Microsoft Corporation. — Mode of asces
https://msdn.microsoft.com/en-us/library/bb74258pxa — Date of access: 20.01.2017.

RFC 1945 — Hypertext Transfer Protocol — HTTP/1HeEtronic Resource] / Tim Berners-Lee, Roy T.
Fielding, Henrik Frystyk Nielsen. — Mode of acceasips://tools.ietf.org/pdf/rfc1945.pdf. — Date adcess:
20.01.2017.

RFC 4559 — SPNEGO-based Kerberos and NTLM HTTP éutibation in Microsoft Windows [Elec-
tronic Resource] / Karthik Jaganathan, Larry Zhuphnl Brezak. — Mode of access:
https://tools.ietf.org/pdf/rfc4559.pdf. — Date aicess: 20.01.2017.

RFC 4648 — The Basel6, Base32, and Base64 DatalilagsdElectronic Resource] / Simon Josefsson.
Mode of access: https://tools.ietf.org/pdf/rfc468. — Date of access: 20.01.2017.

317

