MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017
ITC, Electronics, Programming

UDC 004.424

NEW PARADIGM OF PROCESSING OF COMMAND LINE ARGUMENTS

OLEG SUKHORUKOV, OKSANA GOLUBEVA, VIKTOR KURLOV
Polotsk State University, Belarus

The article describes the author's method of conthiene arguments processing. The main features of
the method, in contrast to the existing analogigethe versatility, natively-friendly interface thallows quick
start at first use and does not require deep stfdyocumentation.

Programming technologies are not static; both,pttegramming paradigm itself that defines not only a
set of ideas and concepts, and the style of writbtgputer programs [1]. Going to a higher levehbs$tractions,
the code, according to the author, is becoming nimdtgtive, readable. The development of compuéehnol-
ogy expands the style of software writing from tmgle "how it will be convenient for the compilerppessor”
up to the code "how it will be convenient to a jpers If one considers the development of the lii@aused in
the creation of software — firstly, the developmientot only based on the maximum speed of its avthwork,
and secondly, with the creation of maximum comfquick start of their usage, even to the detringdribe first
one.

Functions of the «getopt ()» and the «getopt_lgngl{eing today the de facto standard tool for psse
ing of command line arguments in the UNIX / Linuxveonment, were developed in 1980s [2, p. 43]gbri
nally, the functions were created for the «C» laaggy but almost for any language today there areiadibrar-
ies that implement their functioning or work onithigase. For example, the "Argp" created for tine lof the
"C" languages [3], "the getopts" for "the bash", e "optparse" for the "Python" [5] and others.

Functions of the «getopt ()» and the «getopt_ldngds well as their derivatives, seem the authdrac
today, even "greeting from the 80's." For suchwéalt far from being the main, but extremely imfont task, as
processing of command line arguments [6], it isdeele perhaps, more than one man-hour to figurdnowtto
use them properly. At the same time, through thbals personal experience, if you fill the «Arggtuctures
once, and understand how to do it, you will notehto deal with it again, using it for the secoimaet

The problem described, forms a clear goal: in theetbpment of a new method of command line argu-
ments processing, the priority is - to provide mawin comfort, natively-friendly interface, quick gtat first
use which does not require deep study of docurientat

Not only to the author of the article the interfaafethe methods described seems too complicated, ou
dated, or having insufficient functioning. Thereravavritten numerous articles on this topic, haverbeepeat-
edly taken and are still taken successful attetiaptseate a simpler interface, while extendingftheetioning of
existing methods. A good example would be the tipreshflags», which uses the same function of thetept
()», but in addition to parsing of options, it calso check their values and even independently tadl variables
for options according to their long name [7]. Sanisuccessful analogues of standard functions edound in
almost any language, for example, a more advanitedry «argparse» for the «Python» [8], replacimg a
«optparse» library [5], which has already becomeome cases, standard.

Behind the apparent way out, lies the problem,afmtious at first glance. Functions of the «getgpt (
and the «getopt_long ()» were universal, as theg e only ones, and therefore one did not hawkekee into
the nuances and differences of numerous methods. iNturns out that in every programming languages
way or another, eliminating the drawbacks of thiginal functions, there is its own implementatidrtite com-
mand line arguments processing, with its librarg anset of methods that with each successive veisiin-
creasingly removed from the original functions 680s.

The author, positioning himself as a system prognamadministrator, often needs to write small suppo
programs, at the same time quickly switching frone ¢anguage to another. These can be all sortsrigts
written in a script language, as well as programittem with the line of "C" languages. Processirfighe com-
mand line, considering all the possible «<POSIX»eagrents, may not be a trivial task [6], which, teturn,
affects complexity of the application, known to @gthor processing methods. Often, according tathbor's
experience, the code of command line processinglredgnger and even more complicated than the obthee
main program, for example, of a short script. A& #ame time constant switching between the metbbdg-
tions processing, different programming language$y aggravates the situation additionally takimgag time
and efforts.

It is therefore necessary to develop not only samplt also definitely a universal method of comchan
line arguments processing, which does not requiitclsing between languages.

One of the easiest ways to create a universal methd a separate application is responsible far t
processing of options (see Fig. 1). In this case,"program” transmits to the "handler", in thenficsf a configu-

346

MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017
ITC, Electronics, Programming

ration file or line, the structure of options used,well as a command line that requires proces3ihg "han-
dler" parses the command line according to thestréited structure of options, stores the receivath do a
temporary file and completes its work. As needed"girogram" sends requests to the "handler" — ia@dler"”
compares them with the file and sends an appreprégponse to the "program”.

Program Parser
! . } 0110 1000 1010
0101 1001 1110
0010 0101 0101
0010 1010 1110
Configuration file Data file

1001 0101 0101
0100 0010 1111
1001 1100 0110

Fig. 1. General processing circuit

The circuit with the handler, in the form of a segta program, is the price that one needs to pay fo
versatility. Such a method cannot be called rapid,the command line arguments processing is aegioe
which usually does not require quick computatidrit'e number of requests can be reduced to the mmjrp
to the receipt of all "formalized" data in resporieethe transference of the command line. If theespof
information exchange between the "program” and'tlaedler" is important, then, the following exampliethe
database, instead of single calls, to open sessiemough, at which the "handler" will be finishihg work not
after working off another request, but after a @ertinterval of time. Sleep interval is prolongedil the
expectation of a new request. Under such a schémerg, the "handler" does not require, at everyuest, to
read or reset the data to a temporary file, heduilit only after a sleep interval. The data fdaémoved by the
"handler”, on request, at the end of the progréeclycle.

If the scheme with the handler, in the form of pasate program, is responsible for versatility foé t
method, therefore the comfort and natively-friendihyerface will be responsible for the structure thé
configuration file. As the configuration file, orman choose any format, from «YAML» [9], «XML» [1(4nd
«JSON» [11] in respect of their own developmentscakding to the author, the best solution for themation
of the configuration file, will be the use of «J&eaipt" language [12].

Although the format of the "YAML" configuration & for example, may be called "user-friendly",
however, it cannot be called standard. Separafi@ymactic elements is produced by a sequencagi digns
ending with a special symbol [9]. This may be umnmstoemed for people not familiar with the format,ie¥h
means that it can bring additional inconveniencéheir work. The format «XML» has a redundant magki
behind which, eventually, the basic data are [b6}.[«JSON», unlike «XML», has a minimalistic maudgithat
is actually unostentatious [11]. Moreover, the egtd format — «JSON5», supports comments, has plesim
format allowing the existence of minor errors (fxample, it is allowed to have a comma after tise ééement
in an object or list), etc. [13].

The "JSON" is based on the «JavaScript» [11] amextended format, in principle, is already ideally
suitable for the use in the "program-handler" sahehiowever, using, instead of the format «JSONBe, t
programming language in which the «JavaScript» based [12], we do not limit ourselves to the forniait
obtain all the available functions of the programgilanguage, which opens up new opportunities. The
"handler”, in this case, will act in the role oftémpreter, producing line analysis, handling andgpam
execution, described in the configuration file.

Using the scenario programming languages in thdigumation files is not a new method, but proved
perfectly. A good example would be the configuratiibe of the domain «XEN», that is, in fact, theipt in the
language of «Python». This means that in the cardiipn file can be used any structure of this imug,
making it flexible and efficient. For example, yoan combine configuration files of several machiims one,
and to run any of them using this file with a paesen, indicating the domain with the help of whizimachine
should start and so on [14]. At the standard wsmeeXample, initialization of variables, programmianguages,
the method of application is not different from thethod used in simple configuration files, for exde, in the
«INI» file, distributed in «MS Windows» [15], ankddrefore does not complicate the code.

347

MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017

ITC, Electronics, Programming

10.
11.
12.
13.
14.

15.

REFERENCES

The Great Encyclopedia of Oil and Gas [Bolshaya &Kopediya Nefti | Gaza] // Development —
programming [Razvite — programmirovanie]: site, 180 - Mode of access:
http://www.ngpedia.ru/id360477p1.html.

Robbins, A. (2005), Linux: programming in examples: Transnir Eng. [Linux: programmirovanie v
primerah], KUDIC-OBRAZ, Moscow, 656.

GNU Operating System // Parsing Program Optionth wArgp: site, 2015. — Mode of access:
http://www.gnu.org/software/libc/manual/html_nodegp.html#Argp

CIT Forum // getopts - parse of command optionsogs - razbor opcij komandy]: site, 2016. — Mode o
access: http://citforum.ru/operating_systems/mgapsETOPTS.1.shtml.

Python // optparse — Parser for command line optiosite, 2016. — Mode of access:
https://docs.python.org/dev/library/optparse.html.
GNU Operating System // GNU Coding Standards: , si2015. — Mode of access:

http://www.gnu.org/prep/standards.

Habrahabr // Administering> bash script with support for long (gnu-style) ops [Administrirovanie—
bash skript s podderzhkoj dlinnyh (gnu-style) dJpcijsite, 2016. — Mode of access:
https://habrahabr.ru/post/133860

Python // Argparse Tutorial: site, 2016. — Modeo€ess: https://docs.python.org/3/howto/argpanse. ht
The Offical YAML Web Site // YAML 1.2: site, 2016- Mode of access: http://lyaml.org/.

XML.com // XML: site, 2014. — Mode of access: hittpww.xml.com/.

JSON // Introducing JSON: site, 2016. — Mode ofeasc http://www.json.org/.

JavaScript // JavaScript: site, 2016. — Mode o&aschttp://www.javascript.com/.

JSONS5 // JSONS: site, 2016. — Mode of access:/htpw.json5.org/.

XGU /I Configuration file XEN [Konfiguracionnyj faj XEN]: : site, 2009. — Mode of access:
http://xgu.ru/wikiKondurypanuonnsiii_daiin_Xen.

non GNU // INI formats: : site, 2016. — Mode otass: http://www.nongnu.org/chmspec/latest/INllhtm

348

