MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017
ITC, Electronics, Programming

UDC 004.428.4
REVIEW OF SPRING CLOUD CONFIG

RAMAN KHRAPAVITSKI, YAUHEN SUKHAREU
Polotsk State University, Belarus

This article focuses on Spring Cloud Config, whik library of Spring Framework. A short overviefv
functionality and capabilities of this library iggsented.

Introduction. Spring Cloud Config provides server and client-sidpport for externalized configuration in a
distributed system. With the ConfigServer you haveentral place to manage external propertiesgdplications
across all environments. The concepts on both tclieend server map are identical to
Spring Environment and PropertySource abstractemghey fit Spring applications very well, but danused with
any application running in any language. As aniagpibn moves through the deployment pipeline fiew to test
and into production you can manage the configundbietween those environments and be certain tipditations
have everything they need to run when they migiite. default implementation of the server storaagkénd uses
git so it easily supports labeled versions of @anfition environments, as well as being accestitdewide range of
tooling for managing the content. It is easy to alfieinative implementations and plug them in \8ighiing configu-
ration.

Changing configurations on running services carclm@bersome, especially if the application does not
have a way to be configured remotely. Spring ClGoafig provides a way to make this easier by inidg a
Config Server from which clients fetch their configtion. The figure below illustrates how Springp@ Con-
fig works.

Git repository|« - - - - »| Config server
| 4)
| Service 1 Service 2 Service 3 | Conﬁg C||ents
| |
- o

Fig. 1 — Common architecture diagram of how Sprioega config works

Spring Cloud Config Server provides the followirgfures:

1. HTTP, resource-based API for external configara(name-value pairs, or equivalent YAML content)
2. Encrypt and decrypt property values (symmetriasymmetric)

3. Embeddable easily in a Spring Boot applicatisingi @EnableConfigServer.

Config Client provides the following features (pring applications):

1. Bind to the Config Server and initialize Sprigvironment with remote property sources

2. Encrypt and decrypt property values (symmetriasymmetric)

3. Fail fast and retry

The server is a Spring Boot application so it is/\easy to create stand-alone, production-gradegpased
applications that can be "just run".

The default strategy for locating property sourcés to clone a git repository (at
spring.cloud.config.server.git.uri) and use itndialize a mini SpringApplication. The Spring baapplications
environment is used to enumerate property sourgpablish them via a JSON endpoint.

351

MATERIALS OF IX JUNIOR RESEARCHERS’ CONFERENCE 2017
ITC, Electronics, Programming

The HTTP service has the following resources forms:

1. {application}/{profile}[/{label}]

2. {application}-{profile}.yml

3. {label}/{application}-{profile}.yml

4.[{application}-{profile}.properties

5./label}/{application}-{profile}.properties

"Application" is injected as the spring.config.namehe SpringApplication (i.e. what is normallypfali-
cation" in a regular Spring Boot app), "profile"da active profile (or comma-separated list of rtips), and
"label" is an optional git label (defaults to "mexst)

Also you should create bootstrap.properteies filé add it to classpath of your spring boot appiicat
Then you just need to add one property to this $ifging.cloud.config.server.git.uri: {pathToGitRegitory}.

That is all, server side of Spring Cloud Configgady to be used.

Now let’s look at client side of Spring Cloud CanfiTo use Spring Cloud Config features in an applic
tion, just build it as a Spring Boot applicatioratiiepends on spring-cloud-config-client (e.g. theetest cases
for the config-client, or the sample app). The nmstvenient way to add the dependency is via an§@Bbot
starter org.springframework.cloud:spring-cloud+&aconfig. Then you just need to add one proptrtyour
client of Spring Cloud Config: spring.cloud.config: http://myconfigserver.com.

That is all. When Cloud Config client will startautomatically and fetch properties from Cloud Ggnf
server, all other work for injecting propertiesytmur beans Spring does by itself.

You are free to secure your Config Server in any tisat makes sense to you (from physical network se
curity to OAuth2 bearer tokens), and Spring Seguitd Spring Boot make it easy to do a lot of teing

If the remote property sources contain encrypteteard, (values starting with {cipher}) they will luke-
crypted before sending to clients over HTTP. Thénraavantage of this set up is that the propertyesado not
have to be in plain text when they are "at rest.(& a git repository). If a value cannot be gpted, it is re-
moved from the property source and an additionapeity is added with the same key, but prefixed Rittva-
lid." and a value that means "not applicable" (llgdan/a>"). This is largely to prevent cipher texeing used
as a password and leaking accidentally.

To use the default Spring Boot configured HTTP Basgcurity, just include Spring Security on the
classpath (e.g. through spring-boot-starter-sggurlthe default is a username of "user" and a rentd@ener-
ated password, which isn't very useful in practise,we recommend you configure the password (Wwa-se
rity.user.password) and encrypt it (see belowrstructions on how to do that).

In some cases, it may be desirable to fail staofug service if it cannot connect to the Configuger If
this is the desired behaviour, set the bootstragigaration property spring.cloud.config.failFasize and the
client will halt with an Exception.

If you expect that the Config server may occasigria¢ unavailable when your app starts, you canitask
to keep trying after a failure. First, you needsti spring.cloud.config.failFast=true, and then yeed to add
spring-retry and spring-boot-starter-aop to yoasspath. The default behaviour is to retry 6 timitls an initial
backoff interval of 1000ms and an exponential mlitr of 1.1 for subsequent backoffs. You can ogunfe
these properties (and others) using spring.clomfigoetry.* configuration properties.

Conclusion. Spring Cloud Config allows managing external prtpsrfor applications across all environ-
ments. Now we are able to create a configuratioreséo provide a set of configuration files fron®sé repository to
client applications. As you can see, spring cleua very easy and friendly library to use.

REFERENCES

1. Repository of spring cloud config — Github [Blenic resource] / Github Inc., 2017. — Mode of egx
https://github.com/spring-cloud/spring-cloud-configDate of access: 28.01.2017.

2. Spring framework — Wikipedia [Electronic resairé¢ Wikimedia Foundation., 2017. — Mode of access:
https://en.wikipedia.org/wiki/Spring_Framework. -ate of access: 28.01.2017.

3. Microservice architecture with Spring cloud dgnf Habrahabr [Electronic resource]. — Mode ofemsc
https://habrahabr.ru/post/280786/. — Date of ac@%61.2017.

352

