MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

1. The model describes a system of physical obj@dsesponding to the vertices and edges of the
graph).

2. The algorithm (approximately) calculates a stdtequilibrium for this system.

Description of the model is based on ideas aboutt wan be considered a good image in each cask. Wit
the model associated objective function describirmgncrete concept of good images, and the algonithed to
optimize the objective function.

The same method of simulated annealing and gealgiicithms are universal approaches to optimize any
of the criteria of quality, and are used for alisdes of graphs. Among their advantages also imaade of im-
plementation and clarity for the user.

Thus, the following conclusions can be made. Bjirdtie algorithms to automatically place graphsegiv
good results only in certain classes of them. Saélgpthe image produced by the graph strongly ddpem the
particular application. We must fulfill certain difra criteria that apply image. Not all graph visaation algo-
rithms can ensure the implementation of the cetefiherefore, an important finding of such appreacthat
would allow not only to meet certain quality criterbut also the opportunity to work with arbitramsaphs.

REFERENCES

1. Koneunast maremaruka // Bonbimast coBerckast suikinonenus : B 30 1. / min. pen. A.M. Ilpoxopos. — 3¢ u3n. — M. :
Cos. snuuKi., 1969-1978.

2. JluckpeTHas MaTeMaTHKa U KomMOuHatopuka / mof. pex. JhxeiiMc A. AHAEPCOH ; 1ep. ¢ auri. —M. : Bubsame, 2004, —
960c¢.

3. Acanos, M.O. TuckperHas Mmatemartuka: I'padsl, anropurmsl @ y4e6. mocobue / M.O. Acanos, B.A. bapanckui,
B.B. Pacun / nox. pex. M.O. Acanos. — 2 uza. —M. : Jlans, 2010. — 368.

4. Busyamuzauus rpados [DnexTponHslil pecypc] / Bukunenus — cBobonuas sHimKnoneaus. — Pexum gocryma: http:/
ru.wikipedia.org/wikiBusyanu3zauus_rpagos. —Iara gocryna: 01.01.2016.

5. TI'padsl B nporpaMMupoBanuu: 00paboTKa, Busyaiusanus U npuMenenue / moa. pen. B. Kacesnosa, B. EBcturseesa. —
CII6., 2003. — 1104.

UDC 004.75
APPROACHES TO THE CONSTRUCTION OF DISTRIBUTED WEB S YSTEMS

YURI LAPTEV, RYKHARD BOHUSH
Polotsk State University, Belarus

This paper dwells on some of the key issues tlatidtbe considered in the design of large websiss,
well as some of the basic components used to achiese goals. The main attention is paid to theyais of
web-based systems.

Open source software has become a fundamentalirgiildlock for some of the biggest web-
sites. Building and operating a scalable web dita arimitive level is just connecting users widgmote re-
sources via the Internet — the part that makesaitable is that the resources, or access to thessmirces, are
distributed across multiple servers. The time emmhead when building a web service can helpariahg run.
Below are some of the key principles that influemice design of large-scale web systems: perforearust,
reliability, availability, scalability and managekty [1].

The speed of a website affects its usage and afisfagtion, as well as search engine rankingsa Ae-
sult, a system that is optimized for fast responseseated. A system needs to be reliable, soahatuest for
data will consistently return the same data. Iredfshe data changes or is updated, the same segheuld
return the new data. Users should be sure thatteowill be lost. Designing systems to be availabl&ilure is
a fundamental and a technology requirement. Highilahility in distributed systems requires carefahsidera-
tion of redundancy for key components, rapid recpve case of partial system failures. For soméheflarger
online retail sites, being unavailable for even u@s can result in thousands or millions of doliartost reve-
nue. The effort required to increase capacity tdlegreater amounts of load, commonly referreastthe scal-
ability of the system, is very important. Scaldbilcan refer to many different parameters of theteay: how
easy it is to add more storage capacity, or evenrhany transactions can be processed. Designigigtans that
is easy to operate is another important considerafihings to consider for manageability are theeeaf diag-
nosing and understanding problems when they otlweiease of making updates or modifications [2].

Each of these principles provides the basis foisitats in designing a distributed web architecture.
However, they can also be at odds with one anotloethat achieving one objective comes at the @foshother.

160

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

When designing any sort of web application it ipartant to consider these key principles to finel thost suit-
able solution for each specific task.

When it comes to system architecture, there aewattiings to consider: what the right pieces aosy h
these pieces fit together, and what the right wédeare. The initial system planning can save suit&l time
and resources in the future. Consider the exampl®sting for downloading images. Imagine a systenere
users are able to upload their images to a cesdrakr, and the images can be requested via aimkell here is
no limit to the number of images that will be sthraecessary data reliability, as well as the riedz fast load-
ing operations and query images. In addition, ttetesn should be easy to maintain and cost effective

When considering scalable system, it helps to daedwinctionality and think about each part of #ys-
tem as its own service with a clearly defined ifstee. Each service has its own distinct functiamaitext, and
interaction with anything outside of that conteadtds place through an abstract interface. In alsiahgsign of
the architecture all requests to upload and redrimmages are processed by the same server, hovesviie sys-
tem needs to scale it makes sense to break ow th@sfunctions into their own services. Anothetgmtial
problem with this design is that a web server tgfhychas an upper limit on the number of simultars2oonnec-
tions it can maintain. Since reads can be asynolsror take advantage of other performance opdiioizs
like gzip compression or chunked transfer encodimg,web server can switch serve reads fasteraitchsbe-
tween clients quickly serving more requests peoséthan the max number of connections. Writegherother
hand, tend to maintain an open connection for thatibn for the upload, with the result that the BAserver
cannot handle the new clients until other proces$ascording information complete them. Planniog this
sort of problem makes a good case to split outsead writes of images into their own servicess®liows us
to scale each of them independently, but also hetpefy what is going on at each point. Finallgist separates
future concerns, which would make it easier toliteshoot and scale a problem like slow reads [3].

In order to handle a failure, web architecture sthduave redundancy of its services and data. Famex
ple, if there is only one copy of a file stored @single server, then losing that server meanadaiat file. A
common way of handling it is to create multiple,redundant, copies. This same principle also appeser-
vices. Creating redundancy in a system can rersmgge points of failure and provide a backup aarsgfunc-
tionality if needed in a crisis. For example, iéth are two instances of the same service runnipgaduction,
and one fails or degrades, the systemfadover to the healthy copy. Another key part of servicguraancy is
creating sshared-nothing architectur&Vith this architecture, each node is able to ageindependently of one
another. This helps a lot with scalability sincevmedes can be added without special conditiorigiowledge.
There is no single point of failure in these sysieso they are much more resilient to failure [4].

There may be very large data sets that are urabiteon a single server. It may also be the chaedn opera-
tion requires too many computing resources. Ineeitase, you have two choices: scale verticallizasizontally.
Scaling vertically means adding more resources adividual server. Therefore, for a very largéadset, this might
mean adding more hard drives so a single servecaraain the entire data set. In the case of thepote operation,
this could mean moving the computation to a biggever with a faster CPU or more memory. To scatedntally,
on the other hand, is to add more nodes. In treafdhe large data set, this might be a secongstr store parts of
the data set, and for the computing resource, itldvonean splitting the operation or load acrossesaniditional
nodes. In our image server example, it is postilaiethe single file server, used to store imagmdld be replaced by
multiple file servers, each containing its own wigicget of images. Such an architecture would ahevsystem to fill
each file server with images, adding additionalesaras the disks become full.

Of course, there are challenges distributing datiunctionality across multiple servers. One of Key
issues is data locality; in distributed systemsdloser the data to the operation or point of cotapon is, the
better the performance of the system becomes. fdner# is potentially problematic to have dataesat across
multiple servers, as any time it is needed it matylre local, forcing the servers to perform a gofgtch of the
required information across the network. Anotheteptial issue comes when there are different sesvieading
and writing from a shared resource. For examplend client sent a request to update image witkvatitle, but
at the same time another client was reading thgémdnder these circumstances, it is unclear whitiehwould
be the one received by the second client.

We now consider the question of access to datingcdlost simple web applications run on the folow
ing principle: the user through the Internet refershe application server, and that in turn comicries with
the database server. As they grow, there are two amallenges: scaling access to the app servetaatie da-
tabase. Most systems can be simplified to the faiman the user directly access the data. For the shkhis
section, let us assume you have many terabytesdi@ta and you want to allow users to access|pugions
of that data at random. Get access to specific idgtarticularly difficult because the loading largmounts of
data in memory can be very note and directly affélse amount of disk 10. Moreover, even with unidis,
solving the problem of knowing where to find thiétlé bit of data can be an arduous task. Thankfuliere are
many options that you can employ to make this eafar of the more important ones are caches, ipspin-
dexes and load balancers.

Caches take advantage of the locality of refergagciple: recently requested data is likely toree
quested again. They are used in almost every lafyeomputing: hardware, operating systems, web beosy
web applications and more. A cache is like sharitenemory: it has a limited amount of space, buyjscally

161

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

faster than the original data source and contéi@sriost recently accessed items. Caches can éxbtlevels
in architecture, but are often found at the levednest to the front end, where they are implemetaagturn
data quickly without taxing downstream levels.

At a basic level, a proxy server is an intermedméee of hardware/software that receives requests
clients and relays them to the backend origin servEypically, proxies are used to filter requekisg, requests.
Proxies are also immensely helpful when coordigataguests from multiple servers, providing oppuittes to
optimize request traffic from a system-wide persipec One way to use a proxy to speed up data adee®
collapse the same (or similar) requests togetherane request, and then return the single resuhé request-
ing clients.

Using an index to access your data quickly is d-lwebwn strategy for optimizing data access perform
ance; probably the most well-known when it comesidtabases. An index makes the trade-offs of isecka
storage overhead and slower writes for the benéfaster reads.

Load balancers are a principal part of any archite¢ as their role is to distribute load acrossegof
nodes responsible for servicing requests. Theinmarpose is to handle a lot of simultaneous comomes and
route those connections to one of the request natlesing the system to scale to service more estgiby just
adding nodes. In a distributed system, load balarme often found at the very front of the systsath that all
incoming requests are routed accordingly. Loadrnzaes also provide the critical function of beirieato test
the health of a node, such that if a node is urresipe or over-loaded, it can be removed from & pandling
requests, taking advantage of the redundancy f#rdift nodes in your system [5].

The development of effective systems with fast aste large amounts of data is a very interestpect
and there are many different approaches that gweight to form the architecture of systems inghdy stages
of development. When designing a distributed wefetasystems there are always a number of diffesylthe
solution of which will have to sacrifice some piipples to make full use of others. Some useful waydevelop
a scalable system are: the separation of funciiyrtal services, the use of redundancy to addraidsrés, the
use of data partitioning. With the growth of apptions often use to simplify the systems appro#uh,main
ones are proxy, indexes, caches and load balancers.

REFERENCES

1. Abbott, Martin L. Scalability Rules: 50 PrinciplesrfScalling Web Sites / Martin L. Abbott. — 1st fimh. — Addison-
Wesley, 2011.

2. Abbott, Martin L. The Art of Scalability: ScalabWeb Architecture, Processes, and OrganizationeeoModern En-
terprise / Martin L. Abbott. — 2st Edition. — AddisWesley, 2013.

3. Schlossnagle, T. Scalable Internet Architecture$dhlossnagle. — 1st Edition. — Developer’s Lijpr2010.

4. Mani Krishna, C. Fault-Tolerant Systems / C. Manisiiria. — 1st Edition. — Elsevier, 2008.

5. The Architecture of Open Source Applications [HElenic resource]. — Mode of access: http://www.aos&torg/en/. —
Date of access: 29.09.2015;

UDC 510

SINGULAR DECOMPOSITION OF MATRIXES IN TASKS

OLGA AGAFONOVA STEPAN EKHILEVSKIY, NINA GURYEVA
Polotsk State University,Belarus

For any real or complex (mn) — matrix A with rank r of the matrixA A and AA , where A’ is ob-
tained from the matrixd by transposition and replacement of componentthercomplex conjugate is, are sym-
metric or Hermit with rank r and dimension accorglito n and m. Note that they are non-negative. &foee
characteristic numbers of such matrixes are thé nem-negative numbers.

We designate characteristic numbers of a matixA throughpf,pzz,...,p,f, considering that
ol 2 plz..2 p2(p #0 wheni=l, 2,..., 1.

It is known that the operator with a symmetric ariit matrix A’ A has orthonormal system of eigen-
vectors €, €,,..., § respectively omf,pzz,...,pnz, then there is such vectors tIﬂéIAq = ,oi2 e, i=12,...,n,

where
()_l,Wheni=j,
49 0, wheni # j

162

