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Fig. 7. Yield curve and isomodular line for speammaubjected to plastic prestraining in tension,
at3pi=0.05

In order to estimate errors that are caused byep#dgl the anisotropy considered in the paper, expe
mental data and theoretical predictions obtainedhleytheory of kinematical hardening and by theotheac-
counting for the Bauschinger effect were compalgdconsidering and disregarding a change of modkilus
The comparison was made for two combined loadirigspahich caused the greatest discrepancy betvinesn t
retical results and experimental data.

Plastic strain components were determined in geafaitim using the curve — ¢° obtained experimen-
tally from data of tensile specimens. The resules@esented in Figs. 1-7. The effect of the véeiab on the
accuracy of analytical predictions is most pron@atha Fig. 5, in which plastic strains found experntally
and evaluated theoretically by accounting for tleighinger effect are compared for a specimen stelojeo
initial shearing strain” = 2.7 per cent.

The strain components obtained in accordance \ghnentioned theories even allowing for the de-
scribed plastic strain induced anisotropy, deviadasiderably from those found experimentally (thpplies
specifically to the theory of kinematical harderinyo better agreement can, however, be expected aake
into account, only one of the factors influencingdcuracy of the available flow theories. And iawiof some
reasons for this inaccuracy of the flow theories ba given, i.e. lack of coincidence of the yiedgdilobtained
experimentally and theoretically. Also the influenuf the stress deviator on the plastic deformatimtess was
not considered in any of the mentioned theories ddturacy of these theories is also influencethéyact that
the deviators of stress and plastic strain arecoakial even under proportional loading as foundséyeral in-
vestigators.
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STRAIN CALCULATION FOR COMPRESSED CURVED BAR UNDER COMBINED APPLICATION
OF THERMAL EXPOSURE AND LOAD

EVGENIYA VOLKOVA, LEONID TURISHCHEV
Polotsk State University, Belarus

Differential equation of the axis of a compressadred bar with unspecified ends fixity under corelin
application of thermal exposure and load has beeatained. Application of the obtained equation foaim cal-
culation for a beam, hinged at its ends, has beanahstrated.

It is usual practice to carry out analysis of dtuues in relation to load exposure and temperagwy-
sure separately and subsequently summate the de¢elrstress-strain state (SSS) parameters in aamooedvith
the principle of superposition. But this approashirue for linearly strained structures only. Iseaf flexible
structures geometrical nonlinearity and structurairs calculation must be taken into account. Sisshies as
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flexible compressed curved bars strain calculatiminvestigated in depth. Herein, referenced decusn[1],
[2], [3] may be noted. However, differential eqoats, set out in these documents and underlying cesapd
curved bars strain calculation, do not accounttti@rmal exposure effect on SSS parameters varigtiento
geometrical nonlinearity consideration.

Strain calculation of a linear elastic bar of synmigal uniform cross-section with unspecified efigdiy,
limiting all the motions of the end sections inlfoi partially, is considered. The bar is exposethe action of
the axial forceN, unspecified transverse load and thermal expdéigré).
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Fig. 1

Transverse load and thermal exposure are showg.invfith conventional letter8 andt.
The thermal exposure is characterized by two indeget values — internal temperature incremett

and surface temperature incremart , as well as by the value, dependent on them —eeatyre increment on
the bar axi\ to . Higher temperature is taken as the internal ezatpre. The rate of change of the temperature
increment in the transverse section helglst determined from the following formula:
_ At - At

h

At'

The stress-strain state (SSS) of the bar in anyoseis characterized by deflectioyl( x) , Slope y'(x) ,
bending momenivi (x) , transverse foch(x) and constant axial fordd. SSS of the bar at the origin of the

coordinates is characterized by the initial paramsety,, y,, M, Q, and depends on the conditions of the sec-

tion fixture in this position.
As was shown above [4] curvature of the bar digtoy resulting from the thermal exposure, is de-

scribed by the equation
[1] — (1)
T

p

Curvature of the bending, produced by the loadoactis described by the equation, known from the
strength of materials theory:
1 M
= =, 2
b @

where E — modulus of elasticity of the bar constructiontenial; | — moment of inertia of the bar cross-section
about the axis, perpendicular to the bending plhe;bending moment, occurring in any section.

Thereafter the curvature of the bar under jointoacof temperature and load shall be obtained bg-su
mation of (1) and (2) and with consideration of the of signs in the coordinate system, shown gn fi takes
the following form

M o 3)
p El

The moment value with consideration of the axiatéois described by the expression
M (x) = M (0)+Q(0) x+ N[ y= (9 ]+ M, @)

where Mp — bending moment, occurring in any section fromttiansverse load action.
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When we plug approximation for the line curvaturdhe left-side part of the equation (3), we obtdifa
ferential equation of the compressed curved baewujaint action of load and thermal exposure

M (0)+Q(0) x~ Ny(0) + Mp
El

y' +ky=- aAt, (5)

where k2 =—.
El
The equation obtained (5) is an ordinary non-homegas differential equation of second order with
constant coefficients and its solution is given by

Y=%+Y.
Where
y; = Asin(kx) + Bcog kj
is a general solution of the homogeneous diffeaéetjuation, obtained from (5) and
_M(0)+Q(0) x- Ny(0)+ M, + ElaA t
K?El

Y, =

is a specific solution of the equation (5).
Expressing arbitrary constants through initial paters we obtain the following solution of the dapra(5)

M (0)+ M, + ElaAt’

ZEi (1~ cosky - Q(0)( ke sink. (6)

K3 El

y=y(0)+” ;EO) sinkx-

The solution obtained describes the deflectionsywing in the bar. On having differentiated (6xen
with respect t, we’ll obtain an equation for slopes

M (0)+ M, +ElaAt’ . 0
(0)+M, +Ela sinkx- QZ( )
KEI k“El

Let us demonstrate application of the obtained fdas (6), (7) for compressed curved bar strainutaic

tion with particular scheme of the bar supportind determination of SSS parameters. Let us conaidenple

hinged beam under combined action of temperatwial force N and transverse ford® applied in the middle
of the beam span. The scheme of the beam in tteeddtatrain is presented in Figure 2.

y' =y (0) coskx- (+ coskx. @)
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Fig. 2

In accordance with the conditions of the beam fixtat the origin of the coordinates the initial grae-
ters are characterized by the following values

=]
yO:O,yO:&O,MO:O,QO:E. 8)
In view of (8) the equation for deflections (6) Bltake the following form
y'(0) . alt’ .
= sinkx— 1- cosky - ———( k¥ sinkx. 9
Y= 7 (1~ cosiy = o k¥ 9

It follows from the conditions of the beam rightdeiixture (xd) that the deflection at this end is equal to
zeroy(1) =0. Consequently

-si 1-cosl
(0) =P M=sinkl  np (- coskl). oL
2El k“sinkl k sinkl
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In view of (10-18) deflections of a simple hingeshim will be described by the expression

3 .
y:Plls[v.smv sinvE—(vE—sinvE)}
2El' v sinv (11)
+aAt'I212{l__COS) sivE-(+ cosz)}
v:| sinv
and the expression for bending moments takes tleniog form
M = Pl{z +1[V —.smv sinvg — (V& - sinvz)} +
2 v sinv (12)
L 2Elant [1—.003) sivE—( T cosﬁ)}
Pl sinv

Expressions (11) and (12) are set down with the afiseon-dimensional parameter of the axial force
v = kl and non-dimensional abscissa of the SGCEGTTX.

Setting in (11)x=0.9, let’s find the maximum deflection under combireation of temperature, axial
forceN and transverse forde

Yina = yfna{24ﬁ(v)+ff aﬁ% Fz(v)} : (13)

PI®

where yb = 2661

I
— maximum deflection under transversal foR;ef3 = —— parameter, taking account of
h

beam span to beam section height rafio= At, — At, — thermal exposure parametqar,—Ni — parameter of
Kp

TCEI

12

the level of the transverse loading on the bearfnaictions of the beam crippling loa, , = Functions

F.(v) and F,(v), included in (13), take account of the axial foe¢fect and take the form of

l1{v=-sinv (v . v
Fl(v)zF Zco&\)—(z—smzj ,
2

2
\
V'l 2cos-
2

F, (v)=i 1-cos —(1— cos\éj :
Setting in (12)x = 0.5, let’s find the maximum moment under combined aacf temperature, axial
forceN and transverse forde

Mo = M Em{lwz 17,0 Sap Fz(v)} ,

P

where MFP_ = 2" maximum deflection under transversal force
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