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Fig. 7. Yield curve and isomodular line for specimens subjected to plastic prestraining in tension, 
at Эp

i=0.05 
 
In order to estimate errors that are caused by neglecting the anisotropy considered in the paper, experi-

mental data and theoretical predictions obtained by the theory of kinematical hardening and by the theory ac-
counting for the Bauschinger effect were compared, by considering and disregarding a change of modulus K. 
The comparison was made for two combined loading paths which caused the greatest discrepancy between theo-
retical results and experimental data. 

Plastic strain components were determined in graphic form using the curve σ  — ερ obtained experimen-
tally from data of tensile specimens. The results are presented in Figs. 1-7. The effect of the variable К  on the 
accuracy of analytical predictions is most pronounced in Fig. 5, in which plastic strains found experimentally 
and evaluated theoretically by accounting for the Bauschinger effect are compared for a specimen subjected to 
initial shearing strain э Р  = 2.7 per cent. 

The strain components obtained i n  accordance with the mentioned theories even allowing for the de-
scribed plastic strain induced anisotropy, deviate considerably from those found experimentally (this applies 
specifically to the theory of kinematical hardening). No better agreement can, however, be expected as we take 
into account, only one of the factors influencing inaccuracy of the available flow theories. And in view of  some 
reasons for this inaccuracy of the flow theories can be given, i.e. lack of coincidence of the yield loci obtained 
experimentally and theoretically. Also the influence of the stress deviator on the plastic deformation process was 
not considered in any of the mentioned theories. The accuracy of these theories is also influenced by the fact that 
the deviators of stress and plastic strain are not coaxial even under proportional loading as found by several in-
vestigators. 
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Differential equation of the axis of a compressed curved bar with unspecified ends fixity under combined 
application of thermal exposure and load has been obtained. Application of the obtained equation for strain cal-
culation for a beam, hinged at its ends, has been demonstrated.   

 
It is usual practice to carry out analysis of structures in relation to load exposure and temperature expo-

sure separately and subsequently summate the determined stress-strain state (SSS) parameters in accordance with 
the principle of superposition. But this approach is true for linearly strained structures only. In case of flexible 
structures geometrical nonlinearity and structure strain calculation must be taken into account. Such issues as 
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flexible compressed curved bars strain calculation are investigated in depth. Herein, referenced documents [1], 
[2], [3] may be noted. However, differential equations, set out in these documents and underlying compressed 
curved bars strain calculation, do not account for thermal exposure effect on SSS parameters variation due to 
geometrical nonlinearity consideration. 

Strain calculation of a linear elastic bar of symmetrical uniform cross-section with unspecified ends fixity, 
limiting all the motions of the end sections in full or partially, is considered. The bar is exposed to the action of 
the axial force N, unspecified transverse load and thermal exposure (fig.1).  

 

 
 

Fig. 1 
 

Transverse load and thermal exposure are shown in fig.1 with conventional letters P and t. 

The thermal exposure is characterized by two independent values – internal temperature increment ∆
в

t  

and surface temperature increment ∆
н

t , as well as by the value, dependent on them – temperature increment on 

the bar axis ∆ оt .  Higher temperature is taken as the internal temperature. The rate of change of the temperature 

increment in the transverse section height h is determined from the following formula: 

в нt t
t

h

∆ − ∆′∆ =   

The stress-strain state (SSS) of the bar in any section is characterized by deflection ( )y x , slope ( )y x′ , 

bending moment ( )M x , transverse force ( )Q x  and constant axial force N. SSS of the bar at the origin of the 

coordinates is characterized by the initial parameters  0 0 0 0, , ,y y M Q′  and depends on the conditions of the sec-

tion fixture in this position.  
 As was shown above [4] curvature of the bar distortion, resulting from the thermal exposure, is de-

scribed by the equation 

1

T

t
  ′= −α∆ ρ 

.                                                                       (1) 

Curvature of the bending, produced by the load action, is described by the equation, known from the 
strength of materials theory: 

1

P

M

EI

  = ± ρ 
,                                                                         (2) 

where E – modulus of elasticity of the bar construction material; I – moment of inertia of the bar cross-section 
about the axis, perpendicular to the bending plane; M – bending moment, occurring in any section.  

Thereafter the curvature of the bar under joint action of temperature and load shall be obtained by sum-
mation of (1) and (2) and with consideration of the law of signs in the coordinate system, shown in fig. 1 takes 
the following form 

1 M
t

EI
′= − − α∆

ρ
.                                                                     (3) 

The moment value with consideration of the axial force is described by the expression  

( ) ( ) ( ) ( )0 0 0 PM x M Q x N y y M= + + − +   ,                                             (4) 

where MP – bending moment, occurring in any section from the transverse load action.   
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When we plug approximation for the line curvature in the left-side part of the equation (3), we obtain dif-
ferential equation of the compressed curved bar under joint action of load and thermal exposure 

( ) ( ) ( )
2

0 0 0M Q x Ny MPy k y t
EI

+ − +
′′ ′+ = − − α∆ ,                                           (5) 

where
 

2 N
k

EI
= . 

The equation obtained (5) is an ordinary non-homogeneous differential equation of second order with 
constant coefficients and its solution is given by 

1 2y y y= + . 

Where  

( ) ( )1 sin cosy A kx B kx= +  

is a general solution of the homogeneous differential equation, obtained from (5) and  

( ) ( ) ( )
2 2

0 0 0 PM Q x Ny M EI t
y

k EI

′+ − + + α∆
= −  

is a specific solution of the equation (5). 
Expressing arbitrary constants through initial parameters we obtain the following solution of the equation (5) 

( ) ( ) ( ) ( ) ( ) ( )2 3

0 0 0
0 sin 1 cos sinPy M M EI t Q

y y kx kx kx kx
k k EI k EI

′ ′+ + α∆
= + − − − − .               (6) 

The solution obtained describes the deflections, occurring in the bar. On having differentiated (6) once 
with respect to x, we’ll obtain an equation for slopes  

( ) ( ) ( ) ( )2

0 0
0 cos sin 1 cosPM M EI t Q

y y kx kx kx
kEI k EI

′+ + α∆′ ′= − − − .                             (7) 

Let us demonstrate application of the obtained formulas (6), (7) for compressed curved bar strain calcula-
tion with particular scheme of the bar supporting and determination of SSS parameters.  Let us consider a simple 
hinged beam under combined action of temperature, axial force N and transverse force P, applied in the middle 
of the beam span. The scheme of the beam in the state of strain is presented in Figure 2. 

 

 
 

Fig. 2 
 

In accordance with the conditions of the beam fixture at the origin of the coordinates the initial parame-
ters are characterized by the following values  

0 0 0 00,  0,  0,  
2
P

y y M Q′= ≠ = = .                                                            (8) 

In view of (8) the equation for deflections (6) shall take the following form 

( ) ( ) ( )2 3

0
sin 1 cos sin

2

y t P
y kx kx kx kx

k k k EI

′ ′α∆= − − − − .                                           (9) 

It follows from the conditions of the beam right end fixture (x=l) that the deflection at this end is equal to 
zero ( ) 0y l = . Consequently 

( ) ( )
2

1 cossin
0

2 sinsin

klP kl kl
y t

EI k klk kl

−−′ ′= + α∆ .                                                (10) 



MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE                                                    2016 
Architecture and Civil Engineering 

 23

In view of (10-18) deflections of a simple hinged beam will be described by the expression  

( )

( )

3

3

2
2

1 sin
sin sin

2 sin

1 1 cos
       sin 1 cos

sin

Pl
y

EI

t l

ν − ν = νξ − νξ − νξ + νν  

− ν ′+ α∆ νξ − − νξ νν  

                                              (11) 

and the expression for bending moments takes the following form  

( )

( )

1 sin
sin sin

2 sin

2 1 cos
              sin 1 cos

sin

Pl
M

EI t

Pl

ν − ν  = ξ + νξ − νξ − νξ +  ν ν 

′α∆ − ν  + νξ − − νξ  ν 

.                                        (12) 

Expressions (11) and (12) are set down with the use of non-dimensional parameter of the axial force 

klν =  and non-dimensional abscissa of the section 
x

l
ξ = .  

Setting in (11) 0.5x l= , let’s find the maximum deflection under combined action of temperature, axial 
force N and transverse force P  

( )max max 1 22

48
24 ( )P t

y y F F
∆ = ν + αβ ν ρπ 

,                                                  (13) 

where  
3

max 48
P Pl

y
EI

=  – maximum deflection under transversal force P; 
l

h
β = – parameter, taking account of 

beam span to beam section height ratio; 
в н

t t t∆ = ∆ − ∆  – thermal exposure parameter; 
кр

P

N
ρ =  – parameter of 

the level of the transverse loading on the beam in fractions of the beam crippling load 
2

2кр

EI
N

l

π= . Functions 

( )1F ν  and ( )2F ν , included in (13), take account of the axial force effect and take the form of  

( )1 3

1 sin
sin

2 22cos
2

F

 
 ν − ν ν ν ν = − −  νν   
 

, 

( )2 2

1 1 cos
1 cos

22cos
2

F

 
 − ν ν ν = − −  νν   
 

. 

Setting in (12) 0.5x l= , let’s find the maximum moment under combined action of temperature, axial 
force N and transverse force P  

( )2
max max 1 22

4
1 12 ( )P t

M M F F
 ∆ = + ν ν + αβ ν  ρπ  

, 

where max 4
P Pl

M =  – maximum deflection under transversal force P. 
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