
MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 189

UDC 004.02

INSTALLATION OF THE DATABASE FOR MOBILE SEARCH SERV ICE
OF CITY TRANSPORT ROUTES FOR IOS PLATFORM

SIARHEI RAZANAU , EUGENIY SUKHAREV

Polotsk State University, Belarus

Some peculiarities of cross platform Realm database installation are covered. The illustrated step-by-step
instructions are described.

The main place of use of the application will be a public transport stop, where not every user has perma-

nent access to the Internet. In order for the application to work without the Internet, the offline mode to store
information about routes on devices is required. To store the information, a cross-platform mobile database
Realm has been selected. Its advantages and the installation features are described in the article.

Realm is a cross platform mobile database for iOS (available in Swift & Objective-C) and Android.
Realm has been created to make it better and faster than SQLite and Core Data. It is not only better or faster, it is
also easier to use and we can do many things with just a few lines of code. Realm is totally free and we can use it
without any limits. Realm is made to target mobile apps and it is a novelty, as we did not observe any innovation
in mobile databases in the last decade. Earlier to deal with a mobile database, we had only one option, which was
SQLite or any wrapper that uses SQLite behind the scene like Core Data. Realm is designed to be easy to use as
it is not the ORM and it uses its own persistence engine for greater performance and speed.

Realm is incredibly fast and easy to use and it will require just a couple of code lines to accomplish any
task, be it reading the database or writing information down in it. Below are all the reasons and advantages,
which make Realm the best choice to work with a database in a mobile app:

– Easy Installation
– Speed
– Cross Platform
– Scalability
– Good Documentation & Support
– Reliable
– Free
There are some prerequisites to work with Realm:
– iOS 8 or later, OS X 10.9 or later.
– Xcode 6.3 or later.
– Realm has two releases, one for Swift 2.0 and one for Swift 1.2. Realm for Swift 2.0 is recom-

mended for use. Developers can use it for Swift 1.2 but it will not be supported with Realm team in the future so
to be safe it is better to use the release of Swift 2.0.

Configuring Xcode. Before configuring the Xcode project, make sure to have installed CocoaPods in the
computer as it will be used for installing Realm in the Xcode project.

After that navigate to the project directory in the terminal and execute the “pod init” command to initial-
ize the CocoaPods.

Then open the pod file generated with Xcode and edit it to add the pod ‘RealmSwift’ right after the target,
so it should be something like this (Fig. 1):

Fig. 1. Terminal Window

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 190

Next, run the command “pod install” to download the install Realm in the project. After this, a new
Xcode workspace will be generated next to the project file. Then open the workspace instead of the xcodeproj.

Now Xcode is ready to work with Realm, but some tools need installing to make working with Realm
easier.

Installing Realm Plugin in Xcode. Realm team has provided a very useful plugin for Xcode that will be
used for generating Realm models. To install the plugin, Alcatraz can be used. Alcatraz is a very simple and use-
ful open source package manager to automatically install plugins, templates, or colors in Xcode. To install Alca-
traz just paste the following command in the terminal and then restart Xcode:

curl -fsSL https://raw.githubusercontent.com/supermarin/Alcatraz/master/Scripts/install.sh | sh

Then in Xcode, select Window and select Package Manager. A popup window will open to choose which
plugin or template to install in Xcode, in the search bar we can search for any plugins or color templates to cus-
tomize Xcode. Write “Realm” in the search bar and a “RealmPlugin” plugin will appear, then click on Install.

Realm Browser. The last tool to install is Realm browser. This browser helps read and edit any realm da-
tabases files. These files are created in the app with all the information about entities, attributes and records in-
side the database tables. These files can be shared among different platforms like iOS or Android. To download
the realm browser tool visit iTunes store to download the latest version. Open the app, then, choose Tools ->
Generate demo database. It will generate the test database realm file without the database. It should look like
this: (Fig. 2):

Fig. 2. Realm Browser

Now everything is ready for the work with Realm.
To create Realm model classes, simply create normal Swift classes that extend the Object class. Think of

Object as the base class for all Realm model classes. It is also possible to extend any class that extends Object at
the end. Realm supports various types of properties such as:

– Int, Int8, Int16, Int32, and Int64
– Boolean
– Float
– String
– NSDate
– NSData
– Class extends Object => Used for One-to-one relations
– List<Object> => Used for one-to-many relations
List as well as Realm class contains a collection of the Object instances (see the screenshot of the demo

database (Fig. 2). The last column is an array of pointers for the existing records in another table. While working
with Realm model classes, we have to know that we can deal with them like with any other Swift classes. For
example, we can add methods or protocols and use them like any other Swift class.

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 191

To generate a Realm class, go to Xcode and create a new file. In the right sidebar, choose Realm (Fig. 3):

Fig. 3. Realm Class Generation

With the help of the instructions given above, Realm can be used in various projects.

REFERENCES

1. Realm [Электронный ресурс]. / Realm Swift. – 2015. – Режим доступа: https://realm.io/docs/swift/latest/. –
Дата доступа: 14.12.2015.

UDC 004.414.23

PROGRAMMING MODEL OF SIDE-VIEW SYNTHETIC APERTURE R ADAR

ALIAKSANDR PRONIN, MIKHAIL IVANOU
Polotsk State University, Belarus

The article considers the principle of operating a side-view Synthetic Aperture Radar on an unmanned

aircraft, its mathematical model and software model algorithm, the results of the synthesis of radar images ob-
tained by probing the Earth's surface relief area.

Introduction: currently, monitoring the state of the earth's surface, mapping and obtaining information

about certain earthly objects are implemented by radio-wave systems. As such, synthetic aperture radar (SAR)
systems are used, which are installed on board of space and ground-based aircrafts. The result is high resolution,
and the information obtained is characterized by high detail [1].

When using a synthetic aperture method, a high resolution synthetic aperture formation is achieved as a
result of the translational movement of the aircraft carrying the antenna, which radiates probe signals in a direc-
tion perpendicular to the track. The spatial resolution of the SAR can be made sufficiently high, regardless of the
altitude of the aircraft.

Nowadays the SAR uses digital signal processing techniques. This makes it possible to realize the syn-
thetic aperture antenna algorithms in real time and in terms of an arbitrary maneuvering aircraft. The challenge
of digital processing of radar image (RI) is solved by programmable logic integrated circuits (PLIC) of FPGA
type, due to their high performance and concurrency work. Also, FPGA is ideal for multiplication operation [2],
which is an integral part of radar data processing.

The goal: to develop a program SAR model, which will be the basis for synthesis algorithms develop-
ment and radar images correction.

