MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

2. Text Region Extraction from Business Card Images fobiv Devices/ A. F. Mollaljet al] // Proc. Of Int. Conf. on
Information Technology and Business Intelligenc€Q®0- P. 227-235.

3. Christian, T. Content recognition of business caEledtronic resource] / T. Christian, D. Gustavsgdduimmer Pro-
ject, IT University of Copenhagen — Copenhagen, 2007http://akira.ruc.dk/~cth/papers/businesscards.pd
Date of access: 12.11.2015.

4. Bhaskar, S. Implementing Optical Character Recognitiorthe Android Operating System for Business Caftiscl
tronic resource] / S. Bhaskar, N. Lavassar, S. Gfesammer Project, IT University of Copenhagen —nfatal. —
https://stacks.stanford.eduf/file/druid:rz26 1ds9BR&iskar_Lavassar_Green_BusinessCardRecognition.pdfate &f
access: 20.12.2015.

5. Smith, R. An Overview of the Tesseract OCR Engine $Rith // Proc. Ninth Int. Conference on Documentlgis
and Recognition (ICDAR), 23-26 September 2007, Cuarjtitarand, Brazil. — 2007. — P. 629-633.

UDC 004.93'11

K-MEANS CLUSTERING ALGORITHM IMPLEMENTATION
USING NVIDIA CUDA TECHNOLOGY

ALIAKSANDR LUKYANAU, RYKHARD BOHUSH
Polotsk State University, Belarus

The purpose of this paper is to describe the kagtp@f the implementation of clustering algorithm
means on the graphics adapter using Nvidia CUDAnetogy. To compare the performance for parallegr
essing and structured programming shows the impiéatien of the algorithm on the CPU. Results ofezkp
ments are presented.

Nvidia CUDA is an architecture for General-purp@senputing on the GPU, which acts as a powerful
coprocessor. With this technology, developers béllable to optimize applications using parallel pating on
the GPU by using augmented essential functiongCthhi@nguage without learning a specific API for wiack
with graphics accelerators. When using parallel matng becomes possible to speed up the audio &l v
encoding, calculations of various physical phenamemdeling of complex systems, and other resdasi(s.

When developing applications using CUDA availaldxible memory organization of the video card, al-
lowing on the one hand to speed up access to fnélguesed data, and on the other to download largeunts
of data for processing by the GPU. At the same tineescale of parallelization is not limited toeaftens of
streams, and provide developers tens and hundfetiewsands of streams of threads simultaneoudig. de-
veloper is not required program management of ei@tthreads on physical cores of the GPU, sintedbn-
cern takes on CUDA driver [1].

For a visual comparison of the performance in palrabmputing let's apply the k-means clusterirgy, a
when it is running there is a lot of similar opéast that can be performed in parallel.

When calculating the k-means algorithm, the elemefthe input array are divided by the given numbe
of clusters the most similar attributes. Choostmgyitumber of clusters based on preceding obsengatiotheo-
retical assumptions. The algorithm consists of sdvaeps: original definition of cluster centergaterative
refinement technique. The algorithm is consideraethete when the condition matches the new clicstaters
with those calculated in the previous iteratiorthe centers, or after a certain number of iteratiohthe algo-
rithm. Next, compare the speed of clustering k-rsemnthe CPU and GPU with CUDA technology.

When implementing the algorithm of k-means on th&UQused procedural programming. As a result,
each iteration is performed a large number of rgunfathe input array elements and centers of dlsistes well
as auxiliary arrays for storage elements and ngefac determining membership of each element tadésred
cluster. Therefore, an increase in the number mitielements or the number of clusters increasedgéat pro-
portion to the execution time of the each itergtiamd thus the entire algorithm as a whole. Thedisting that
implements the algorithm on the CPU is shown below.

do {
for (inti=0; i< kinum; i++)
{
for (int j = 0; j < elcount; j++)

{
tmp = (parr[j] - centroids[i]) * (parr[j] - centroidsi]);

223

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

if (metrics[j] == -1 || tmp < metrics[j])

metrics[j] = tmp;

unit[j] = ;
}
}
}
for (inti=0;i<klnum; i++)
{
sum = 0;
count = 0;
for (intj = 0; j < elcount; j++)
if (unitfj] ==1)
{
sum += parr[j];
count++;
}
centroids[i] = sum / count;
}

cmpflag = true;

for (inti=0; i< kinum; i++)
if (oldcentroids[i] != centroids][i])

cmpflag = false;
oldcentroids][i] = centroids]i];
}
for (inti=0;i < elcount; i++)
metrics|i] = -1;
itcount++;
} while (Icmpflag);

When implementing the algorithm on the GPU to tadteantage of the CUDA technology is used for the
parallelization. This iterative process is dividetb three kernels running on the GPU.

The first kernel performs the identification of baglement of the input sequence to a particulastetu
based on the calculated metrics relative to thstetwcenter. The kernel runs in parallel on the Imemof blocks
corresponding to the number of elements in thetispquence, and the number of threads in each blotk-
sponds to the number of clusters. Thus each blatdulates the metrics of the element of the inggfugnce
relative to the center of each cluster, and théectethe cluster with the lowest metric. For sigrintermediate
results of the metrics relative to the center aheeluster use a shared memory. For storing inpta dnd calcu-
lation results use the global memory of the vidawlcListing of the first kernel is presented below

__global__ void metricsKernel(double *arr, doubleeghtroids, double *metrics, int *unit, int n, int k

{

__shared__ double metrics_cache[threadsPerBlock];

int i = blockldx.x + blockldx.y * gridDim.x; int= threadldx.x;

if (i <n && j < k) metrics_cachelj] = (arr[i] - centroids[j]) * (arr[i] - centroids]j]);
__syncthreads();

if i<n&&j==0)

{

int unit_min = 0;
double min_value = metrics_cache [0];
for (int1=0; | <k; [++)
{
if (metrics_cache [l] < min_value)
{
min_value = metrics_cache [I];
unit_min =1;

224

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

}
}
metrics[i] = min_value;
unitfi] = unit_min;
}
}

The second kernel performs the identification of enters of clusters, based on related elemehésrin-
ning kernel is performed in parallel on the numbieblocks corresponding to the number of clusteith & single
thread in each block. When executing simultaneduslgach cluster iterates through all the elemefitise array that
defines the input elements belonging to certaistets. The number of elements of each clusterrendrhount calcu-
lated, and then calculates a new center clusttingiof the second kernel is presented below.

__global__ void centroidsKernel(double *arr, doubteentroids, int *unit, int n, int k, double
*oldcentroids, int *flags, int *res)
{
int i = blockldx.x;
int unit_count = 0;
double unit_sum = 0;

if (i < k)
{
for (intj=0;j<n;j++)
{
if (unit[j] ==1)
{
unit_sum += arr[j];
unit_count++;
}
}

centroids][i] = unit_sum / unit_count;

}
}

The third kernel compliance checks cents of clsstemputed in the previous iteration centers. Tére k
nel is executed on one block with number of threzmisal to the number of clusters. For storing #mults of
comparison of each cluster use a shared memorgsibte by all threads of the block [2]. Upon contiple of
comparisons going to decide on the conformity it centers with the centers of the previous i@nafT his
solution is stored in a fixed memory to be ablelétermine the completion of the algorithm. Listmfgthe third
kernel is presented below.

__global__ void checkKernel(double *centroids, deumld_centroids, int k, int *res)

{

__shared__ double result_cache[threadsPerBlock];
int i = threadldx.x;

if (i <k)
{
if (centroids[i] != old_centroids]i])
{
result_cacheli] = 1;
old_centroids[i] = centroids]i];
}
else result_cache[i] = 0;
}
__syncthreads();
if (i == 0)
{

int centroids_res = 0;
for (intj=0;j <Kk; j++)

225

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

centroids res+= result_cachelj];
*res= centroids res,
}
}

The results of running the k-means algorithm fet gets with different number of elements of thputrar-
ray and for different number of clusters on the Gi?ld on the GPU are presented in table and shofign in

The results of th&-means algorithm

Number of elements / The runtime The runtime Increase
number of clusters on the CPU (us) on the GPU (CUDA) us in performance
8192/4 6903 472 x14
8192/8 37308 1674 x22
8192/16 272379 4323 x63
16384/8 74812 1102 x67
16384/16 408933 3456 x118
32768/8 134767 1148 x117
32768/16 1178131 6965 x169
65535/4 77475 611 x126
65535/8 410054 1677 x244
65535/16 1891290 3959 x477
131070/4 135101 656 x205
131070/8 662169 1362 x486
131070/16 3301100 3703 x891

1000000

10000
100 I I

1

Runtime (us)

16 (CUDA) Number of
I I clusters
4 (CUDA)

>) Q
> G > Q\
'\/ "') A\ o) 0

Number of elements

Dependence of runtime on the number of data

Significant increase in performance is achievedrizyeasing the amount of data to be processed) as i
this case it is possible to more fully utilize thdl potential of video card for processing the ajast number of
simultaneously executable threads. In the casenafl glata volumes, the increased performance iatlgree-
duced, and at very small portions of data perfocedn decrease because the overhead of exchargfimgvidh
the memory on the graphics adapter.

REFERENCES

1. Kanungo, T. An Efficient k-Means Clustering Algorith Analysis and Implementation / T. Kanungo, D. Mbu
N. Netanyahu // IEEE transactions on pattern arsbsd machine intelligence. — 2002. — V. 24. —. N P. 881-892.

2. bopeckos, A.B. OcHoBbl padotsl ¢ Texnomnorueit CUDA / A.B. bopeckos, A.A. Xapnamos. —M. : IMK Ilpecc, 2010.
—232c.

3. Cangepc, Jx. Texuonorus CUDA B npumepax / k. Canzaepc, D. Ksuapor. —M. : JIMK Ilpecc, 2011 — 232.

226

