
MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 223

2. Text Region Extraction from Business Card Images for Mobile Devices/ A. F. Mollah [et al.] // Proc. Of Int. Conf. on
Information Technology and Business Intelligence, 2009. – P. 227–235.

3. Christian, T. Content recognition of business cards [Electronic resource] / T. Christian, D. Gustavsson // Summer Pro-
ject, IT University of Copenhagen – Copenhagen, 2007. – http://akira.ruc.dk/~cth/papers/businesscards.pdf. –
Date of access: 12.11.2015.

4. Bhaskar, S. Implementing Optical Character Recognition on the Android Operating System for Business Cards [Elec-
tronic resource] / S. Bhaskar, N. Lavassar, S. Green / Summer Project, IT University of Copenhagen – Stanford. –
https://stacks.stanford.edu/file/druid:rz261ds9725/Bhaskar_Lavassar_Green_BusinessCardRecognition.pdf. – Date of
access: 20.12.2015.

5. Smith, R. An Overview of the Tesseract OCR Engine / R. Smith // Proc. Ninth Int. Conference on Document Analysis
and Recognition (ICDAR), 23–26 September 2007, Curitiba, Paraná, Brazil. – 2007. – P. 629–633.

UDC 004.93’11

K-MEANS CLUSTERING ALGORITHM IMPLEMENTATION

USING NVIDIA CUDA TECHNOLOGY

ALIAKSANDR LUKYANAU, RYKHARD BOHUSH
Polotsk State University, Belarus

The purpose of this paper is to describe the key points of the implementation of clustering algorithm k-

means on the graphics adapter using Nvidia CUDA technology. To compare the performance for parallel proc-
essing and structured programming shows the implementation of the algorithm on the CPU. Results of experi-
ments are presented.

Nvidia CUDA is an architecture for General-purpose computing on the GPU, which acts as a powerful

coprocessor. With this technology, developers will be able to optimize applications using parallel computing on
the GPU by using augmented essential functions the C language without learning a specific API for working
with graphics accelerators. When using parallel computing becomes possible to speed up the audio and video
encoding, calculations of various physical phenomena, modeling of complex systems, and other research tasks.

When developing applications using CUDA available flexible memory organization of the video card, al-
lowing on the one hand to speed up access to frequently used data, and on the other to download large amounts
of data for processing by the GPU. At the same time the scale of parallelization is not limited to a few tens of
streams, and provide developers tens and hundreds of thousands of streams of threads simultaneously. The de-
veloper is not required program management of execution threads on physical cores of the GPU, since this con-
cern takes on CUDA driver [1].

For a visual comparison of the performance in parallel computing let's apply the k-means clustering, as
when it is running there is a lot of similar operations that can be performed in parallel.

When calculating the k-means algorithm, the elements of the input array are divided by the given number
of clusters the most similar attributes. Choosing the number of clusters based on preceding observations or theo-
retical assumptions. The algorithm consists of several steps: original definition of cluster centers and iterative
refinement technique. The algorithm is considered complete when the condition matches the new cluster centers
with those calculated in the previous iteration of the centers, or after a certain number of iterations of the algo-
rithm. Next, compare the speed of clustering k-means on the CPU and GPU with CUDA technology.

When implementing the algorithm of k-means on the CPU used procedural programming. As a result,
each iteration is performed a large number of rounds of the input array elements and centers of clusters, as well
as auxiliary arrays for storage elements and metrics for determining membership of each element to the desired
cluster. Therefore, an increase in the number of input elements or the number of clusters increases in direct pro-
portion to the execution time of the each iteration, and thus the entire algorithm as a whole. The code listing that
implements the algorithm on the CPU is shown below.

do {
 for (int i = 0; i < klnum; i++)
 {
 for (int j = 0; j < elcount; j++)
 {
 tmp = (parr[j] - centroids[i]) * (parr[j] - centroids[i]);

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 224

 if (metrics[j] == -1 || tmp < metrics[j])
 {
 metrics[j] = tmp;
 unit[j] = i;
 }
 }
 }
 for (int i = 0; i < klnum; i++)
 {
 sum = 0;
 count = 0;
 for (int j = 0; j < elcount; j++)
 {
 if (unit[j] == i)
 {
 sum += parr[j];
 count++;
 }
 }
 centroids[i] = sum / count;
 }
 cmpflag = true;

 for (int i = 0; i < klnum; i++)
 if (oldcentroids[i] != centroids[i])
 {
 cmpflag = false;
 oldcentroids[i] = centroids[i];
 }
 for (int i = 0; i < elcount; i++)
 metrics[i] = -1;
 itcount++;
 } while (!cmpflag);

When implementing the algorithm on the GPU to take advantage of the CUDA technology is used for the
parallelization. This iterative process is divided into three kernels running on the GPU.

The first kernel performs the identification of each element of the input sequence to a particular cluster
based on the calculated metrics relative to the cluster center. The kernel runs in parallel on the number of blocks
corresponding to the number of elements in the input sequence, and the number of threads in each block corre-
sponds to the number of clusters. Thus each block calculates the metrics of the element of the input sequence
relative to the center of each cluster, and then selects the cluster with the lowest metric. For storing intermediate
results of the metrics relative to the center of each cluster use a shared memory. For storing input data and calcu-
lation results use the global memory of the video card. Listing of the first kernel is presented below.

__global__ void metricsKernel(double *arr, double *centroids, double *metrics, int *unit, int n, int k)
{
 __shared__ double metrics_cache[threadsPerBlock];
 int i = blockIdx.x + blockIdx.y * gridDim.x; int j = threadIdx.x;
 if (i < n && j < k) metrics_cache[j] = (arr[i] - centroids[j]) * (arr[i] - centroids[j]);
 __syncthreads();
 if (i < n && j == 0)
 {
 int unit_min = 0;
 double min_value = metrics_cache [0];
 for (int l = 0; l < k; l++)
 {
 if (metrics_cache [l] < min_value)
 {
 min_value = metrics_cache [l];
 unit_min = l;

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 225

 }
 }
 metrics[i] = min_value;
 unit[i] = unit_min;
 }
}

The second kernel performs the identification of new centers of clusters, based on related elements. The run-
ning kernel is performed in parallel on the number of blocks corresponding to the number of clusters with a single
thread in each block. When executing simultaneously for each cluster iterates through all the elements of the array that
defines the input elements belonging to certain clusters. The number of elements of each cluster and the amount calcu-
lated, and then calculates a new center cluster. Listing of the second kernel is presented below.

__global__ void centroidsKernel(double *arr, double *centroids, int *unit, int n, int k, double
*oldcentroids, int *flags, int *res)

{
 int i = blockIdx.x;
 int unit_count = 0;
 double unit_sum = 0;
 if (i < k)
 {
 for (int j = 0; j < n; j++)
 {
 if (unit[j] == i)
 {
 unit_sum += arr[j];
 unit_count++;
 }
 }
 centroids[i] = unit_sum / unit_count;
 }
}

The third kernel compliance checks cents of clusters computed in the previous iteration centers. The ker-
nel is executed on one block with number of threads equal to the number of clusters. For storing the results of
comparison of each cluster use a shared memory accessible by all threads of the block [2]. Upon completion of
comparisons going to decide on the conformity with the centers with the centers of the previous iteration. This
solution is stored in a fixed memory to be able to determine the completion of the algorithm. Listing of the third
kernel is presented below.

__global__ void checkKernel(double *centroids, double *old_centroids, int k, int *res)
{
 __shared__ double result_cache[threadsPerBlock];
 int i = threadIdx.x;
 if (i < k)
 {
 if (centroids[i] != old_centroids[i])
 {
 result_cache[i] = 1;
 old_centroids[i] = centroids[i];
 }
 else result_cache[i] = 0;
 }
 __syncthreads();
 if (i == 0)
 {
 int centroids_res = 0;
 for (int j = 0; j < k; j++)

MATERIALS OF VIII JUNIOR RESEARCHERS’ CONFERENCE 2016
ITC, Electronics, Programming

 226

 centroids_res += result_cache[j];
 *res = centroids_res;
 }
}

The results of running the k-means algorithm for test sets with different number of elements of the input ar-
ray and for different number of clusters on the CPU and on the GPU are presented in table and shown in fig.

The results of the k-means algorithm

Number of elements /
number of clusters

The runtime
on the CPU (us)

The runtime
on the GPU (CUDA) us)

Increase
in performance

8192/4 6903 472 х14
8192/8 37308 1674 х22
8192/16 272379 4323 х63
16384/8 74812 1102 х67
16384/16 408933 3456 х118
32768/8 134767 1148 х117
32768/16 1178131 6965 х169
65535/4 77475 611 х126
65535/8 410054 1677 х244
65535/16 1891290 3959 х477
131070/4 135101 656 х205
131070/8 662169 1362 х486
131070/16 3301100 3703 х891

4 (CUDA)

16 (CUDA)

1

100

10000

1000000

Number of

clustersR
u

n
ti

m
e

 (
u

s)

Number of elements

Dependence of runtime on the number of data

Significant increase in performance is achieved by increasing the amount of data to be processed, as in
this case it is possible to more fully utilize the full potential of video card for processing the greatest number of
simultaneously executable threads. In the case of small data volumes, the increased performance is greatly re-
duced, and at very small portions of data performance to decrease because the overhead of exchanging data with
the memory on the graphics adapter.

REFERENCES

1. Kanungo, T. An Efficient k-Means Clustering Algorithm: Analysis and Implementation / T. Kanungo, D. Mount,

N. Netanyahu // IEEE transactions on pattern analysis and machine intelligence. – 2002. – V. 24. – N 7. – P. 881–892.
2. Боресков, А.В. Основы работы с технологией CUDA / А.В. Боресков, А.А. Харламов. – М. : ДМК Пресс, 2010.

– 232 с.
3. Сандерс, Дж. Технология CUDA в примерах / Дж. Сандерс, Э. Кэндрот. – М. : ДМК Пресс, 2011 – 232 с.

