MATERIALS OF VII JUNIOR RESEARCHERS’ CONFERENCE 2015
ICT, Electronics, Programming

8. CouuanbHble CETH B COBPEMEHHOM PEKpYTHHIE // DIICKTPOHHBIM HAYYHBIN KypHAT (aKyIbTeTa KkepHaMuCTHKd MI'Y
uM. M.B. JlomoHocoBa [DiektporHbiii pecypc]. — Pexxum mocryma: http://www.mediascope.ru. Hara pocryma:
20.12.2014.

9. barypa, T.A. Meroapsl aHanmM3a KOMIBIOTEpHBIX couuanbHbix cereit / T.A. Barypa // O630p paboT, MOCBSIIEHHBIX
npobJieMe aHalM3a KOMIBIOTEPHBIX COLMaIbHBIX ceTeit. MucTuTyT cucrem undopmatuku uMm. A.I1. Epmosa CO PAH,

HoBocubupck.
10. Social Network Sites: A Definition // Nicole B. Blbn Social Network Sites: Definition, History, a8dholarship. //
Journal of Computer-Mediated Communication. 2007.ledfonic resource]. — Mode of access:

http://onlinelibrary.wiley.com. — Date of acces8:12.2014.
11. Robert, B. Doorenbos Production Matching for Largaining Systems / B. Robert // Computer Science Depat.
Carnegie Mellon University. — Pittsburgh, PA. 1995.

UDC 519.854

SOFTWARE IMPLEMENTATION OF DIJKSTRA'S ALGORITHM

NICOLAI GURTOVENKO, OKSANA GOLUBEVA
Polotsk State University, Belarus

Currently, there are many algorithms to find theodhst way. The most effective of them is Dijkstra’
algorithm. This article is devoted to the softwamgplementation of this algorithm and its interfadesign,
convenient for the use of schoolchildren, studantsteachers in order to quickly resolve the prablef finding
the shortest way.

Navigating troubled people has long been a probMavigation history begins from the time of trade
caravans, the development of relations betweenmgtimilitary campaigns. Even at those times raugps and
routes were drawn. Navigation continued to evoleger, travelers started to draw maps of the whadeld;
maps of individual regions appeared. In the XX ggnscience and industry began to develop activaaty it
led to the emergence of artificial satellites afidveed to draw a detailed map of the earth. The tmesent
inventions are navigators that help a person toerinuvthe direction of a certain point, not knowitihg exact
route, using the communication with the satellN&vigators are now built into all smartphones afféroa
variety of programs, allowing to determine yourdtion and build up the desired route. Also thereais
possibility of communication between users with ktiedp of navigators, tracking traffic jams, speadgidents
and even traffic police posts. The most famous amnes<Yandex Navigator», «Navitel», «OsmAnd>» armbic.

Roads are a network. A network is a connected gigwithout loops, the weight of each arc in whish i
a natural number (the capacity of the arc). Thetskbpath is a path with the lowest cost in paséiimancial,
fuel, time, ect.).

One of the algorithms for finding the shortest vimPpijkstra's algorithm. The algorithm was inventad
a Dutch scientist E. Dijkstra in 1959 and is todapsidered one of the most efficient algorithmsfiioding the
shortest way. The algorithm works with networkshwiit negative weight edges (if we have a one-wag Iib
will not take into account going in the oppositeedtion; it will not let you go along the opposiéme). In terms
of software implementation Dijkstra's algorithnmgigite simple. It needs reasonable system resounrcesasing
the speed of the construction of the way. One d@aidge is the fact that it is not free. The alfponiis patented
and its commercial use is not free of charge.

An overview of analogs of the algorithm

There are several analogs of Dijkstra's algorithihe most popular ones are:

- Bellman-Ford’s algorithm finds the shortest waynfrmne vertex of the graph to all others in a
weighted graph. Weight edges can be negative.

— The A* search algorithm finds the least wastefulteofrom one vertex (primary) to another (target,
final) using a searching algorithm based on ttst fiest match on the graph.

- Floyd — Warshall's algorithm finds the shortest viegween all nodes of a directed weighted graph.

- Johnson's algorithm finds the shortest ways betwadkepairs of vertices of a directed weighted
graph.

- Lee’s algorithm (wave algorithm) is based on thethwoé of widthway search. It finds the way
between the vertices of the graphsadndt (s doesn’'t match), contains a minimum number of intermediate
vertices (ribs). Its main application is tracinge thlectrical connections on the crystals and chipsprinted
circuit boards. It is also used to find the shdrtiéstance on the map in strategic games.

- Kildall's algorithm also finds the shortest way.

138

MATERIALS OF VII JUNIOR RESEARCHERS’ CONFERENCE 2015
ICT, Electronics, Programming

- Kosaraju's algorithm is used for finding ways iredted graphs.

All of the algorithms listed above can be usediita the shortest way, but some of them have found
another use. Below we will describe each algorithmmore detail.

Bellman-Ford’s algorithm is the algorithm to fintet shortest way in a weighted graph. Over time
O (V] x El) algorithm finds the shortest way from one vertéxthe graph to all others. Unlike Dijkstra's
algorithm, Bellman-Ford’s algorithm admits edgeshwiegative weights. It was proposed independemly
Richard Bellman and Lester Ford.

The A* search algorithm in computer science andheraatics uses a best-first search and finds a least
cost way from a given initial node to one goal ngdet of one or more possible goals). As A* traesrshe
graph, it follows a way of the lowest expected ltatsst or distance, keeping a sorted priority quelialternate
way segments along the way. It uses a knowledgeHpduiristic cost function of node x (usually dedd{®)) to
determine the order in which the search visits sadé¢he tree. The cost function is a sum of twacfions:

- the past path-cost function, which is the knowniadise from the starting node to the current node
(usually denoted(x));

- the future path-cost function, which is an admigsitheuristic estimate” of the distance froonto
the goal (usually denotddx)).

The h(x) part of thef(x) function must be an admissible heuristic; thatitisnust not overestimate the
distance to the goal. Thus, for an application li&ating, h(x) might represent the straight-line distance to the
goal, since that is physically the smallest possilistance between any two points or nodes.

Floyd-Warshall's algorithm is a graph analysis aitton for finding shortest ways in a weighted graph
with positive or negative edge weights (but withmagative cycles) and also for finding transitiVesare of a
relation R. A single execution of the algorithm will find tHengths (summed weights) of the shortest ways
between all pairs of vertices, though it does ptiimn details of the ways themselves.

Johnson's algorithm is a way to find the shorteaysvbetween all pairs of vertices in a sparse, edge
weighted, directed graph. It allows some of theeedgights to be negative humbers, but no negatwrigiw
cycles may exist. It works by using the Bellman-e~algorithm to compute a transformation of the ingiaph
that removes all negative weights, allowing Dije&ralgorithm to be used on the transformed graph

If Dijkstra’s nondecreasing priority queue is impiented as a Fibonacci heap, then Johnson’s algorith
work is stillO (V ~ 2\ logV + VE). A more simple implementation of a non-decreagingrity queue time work
become® (VE\ log V), but for sparse graphs this value in the asynptimit behaves better than the running
time of Floyd-Warshall's algorithm.

Lee’s algorithm (wave algorithm) is used in the elepment of printed circuit boards and is widely
distributed in computer games. The problem of figdihe shortest way between points A and B in ithlel bf
play with randomly placed obstacles is charactdrineostly for today's popular tactical and strategames. As
a secondary problem, it can occur in almost anyegasuch as RPG, quests, logical games (a typieahghe is
“Color Lines”). Why is it necessary to seek thersbst route? In some games, such as “UFO-2", “L&sgrad”,
the length of the route depends on the number it oftime spent. It means that the more optimay wrill be
found, the faster the warrior gets to the goal, Butexample, in “Color Lines”, the path lengthnist stipulated
by the rules; the only significant fact is the pbaisy or impossibility of moving the ball. But ithis game it will
be nice, if the ball goes straight to where itlistsnot defiling mysteriously across the game boahe solution
to this problem comes to us from a very remote aueh as electronics, to be exact PCB laying out.

Kosaraju’'s algorithm works as follows. Létbe a directed graph ai®be an empty stack. Whiledoes
not contain all vertices, choose an arbitrary vekenot in S. Perform a depth-first search startingvatEach
time that depth-first search finishes expandingeaex U, pushU onto S. Reverse the directions of all arcs to
obtain the transpose graph. Whiieis nonempty, pop the top vertdékfrom S. Perform a depth-first search
starting atV in the transpose graph. The set of visited vestidl give the strongly connected component
containingV; record this and remove all these vertices froemgtaphG and the stacls. Equivalently, breadth-
first search (BFS) can be used instead of depshgearch.

Statement of the problem and the implementation athe algorithm

When writing a program for Dijkstra's algorithm itamenting, we were faced with certain problems. We
were looking for a prefabricated version of its lempentation. But among open source software we have
found anything worthwhile but for non-working piecef code. If we talk about finished assemblies,hage
found one program working on the algorithm. Howevieris impossible to give a matrix of weights ther
directly, only through drawing a network. Due te tlack of ready code, we wrote it ourselves usheggearch
engine «Google» looking for certain functions amglering some obscure points. While searching aimen
service was found to solve problems of Dijkstrd{goathm. Solutions are given there in detail, thatrix is set
conveniently. The only drawback is the inabilitytork offline and no graphic representation.

At the very start a rough outline of the programswaritten, the so-called “pseudo”, including key
functions with their responsibilities and intert@as. However, in practice it turned out to be enoomplicated.
Implementing of the algorithm itself was easy, kinmyvits mathematical representation. It was necgssa

139

MATERIALS OF VII JUNIOR RESEARCHERS’ CONFERENCE 2015
ICT, Electronics, Programming

simply “be translated into a programming languadé.this stage, the program is a console applicationhich

you want to set a matrix of weights (the prograksdsr a specific value, the user enters it), drahta starting
and final points are requested and the shortestisvegiculated. In the future, we plan to issueaarintuitive

and simple interface, add a graphical represematidshe network, add some modifications of theogtgm.

The program will be useful for pupils and studeintsorder to understand Dijkstra's algorithm while
dealing with the problem of finding the shortestyw@he program is also useful for teachers tottessolutions
pupils and students find quicker. Developing thisj@ct, you can get quite an interesting, usefuddprt,
besides being unique and versatile.

UDC 004.896:613.62
APPLICATION OF FUZZY LOGIC IN MODEL OF OCCUPATIONAL RISK ASSESSMENT

ALENA HALYNSKAYA, YULIYA BULAUKA
Polotsk State University, Belarus

The paper discusses the use of fuzzy logic inrtht@gam of occupational risk assessment.

Soft computing includes fuzzy logic, neural netwgrkrobabilistic reasoning, and genetic algorithms.
Today, techniques or a combination of techniquemfall these areas are used to design an intetiegsystem.
Neural networks provide algorithms for learningsdification, and optimization, whereas fuzzy ladgals with
issues such as forming impressions and reasoniagsemantic or linguistic level.

Fuzzy logic was initiated in 1965 [1] by Lotfi Aadeh, professor for computer science at the Urityers
of California in Berkeley. Basically, fuzzy logis ia multivalued logic that allows intermediate esuo be
defined between conventional evaluations like falgs#, yes/no, high/low, etc. Notions like rathalt br very
fast can be formulated mathematically and procebgezbmputers, in order to apply a more human-lke of
thinking in the programming of computers [2].

In 1993 Kosko (Kosko) proved a theorem on fuzzy ragimation (FAT — Fuzzy Approximation
Theorem) [3], which states that any mathematicatesy can be approximated by a system of fuzzy logic
Therefore, using natural language rules “If — théaifowed by their formalization by means of thedhy of
fuzzy sets can be any arbitrary accurately refleetrelationship “Input Output” without the use afmplex
apparatus of differential and integral calculuaditionally used in the management and identifisati

Fuzzy logic has emerged as a profitable tool fer ¢bntrolling and steering of systems and complex
industrial processes, as well as for householdeamdrtainment electronics, as well as for otherexgystems
and applications like occupational risk assessment.

In the real world, vagueness and ambiguity existabhee of the limitations of our language and other
factors, such as context and perception. Closddyee to this ambiguity is the question of lexizaprecision in
natural language; when expressing knowledge, iddals would rather use words than numbers.

Occupational risk assessment deals with uncertaiat®ns, that is, situations in which we do navé
complete and accurate knowledge about the systm stich as estimate severity consequences gbatoooal
accidents.

Additionally, legal records, statistical data arig slocumentation produced by companies are gdperal
insufficient for determining risks. On-site inspects generally use linguistic expressions rathantimetrics to
assess the safety risks. These facts increasenfiredision and inaccuracies of the occupationklassessment
process, and this imprecision is the reason whyseea fuzzy approach.

For systems in which imprecise and inaccurate médion is available, fuzzy concepts and techniques
provide suitable ways to collect observed inputdaid represent it in a uniform and scalable wayz¥ sets
seem to be quite relevant in three classes of @gfns: classification and data analysis, reagpninder
uncertainty, and decision-making problems.

In our work, we use the lattermost application e€idion making because it will allow the combinatio
of all risk factors using aggregation operatordéfine a general level of risk assessment.

A fuzzy inference system (FIS) essentially defiaesonlinear mapping of the input data vector into a
scalar output, using fuzzy rules. The mapping mec@volves input/output membership functions, FL
operators, fuzzy if — then rules, aggregation dpatisets, and defuzzification.

The FIS contains four components: the fuzzifiefeience engine, rule base, and defuzzifier. The rul
base contains linguistic rules that are providediyerts. It is also possible to extract rules fraumeric data.
Once the rules have been established, the FISeaietved as a system that maps an input vecton twugput
vector. The fuzzifier maps input numbers into cepanding fuzzy memberships. This is required ineor

140

