MATERIALS OF VI JUNIOR RESEARCHERS’ CONFERENCE 2014
ICT, Electronics, Programming

ICT, ELECTRONICS, PROGRAMMING
UDC 004.02
REVIEW OF IRREGULAR CHARACTERISTICS OF PROGRAM CODE

MAKSIM MATSIUSH
Polotsk State University, Belarus

Analysis of the code used to solve the actual problof determining the qualitsgarching plagiarism
and authorship of source code. For each specifigaacan be approached only certain methods andrédlgns
of analyzing the source code of programs.

In the source code of programs, in addition tostamdard features, there are also characteristingipr
to a particular author (naming of variables, th@esof writing, the linguitic peculiarities of conents, the
number of different data types, stable level ofaiarmetrics, etc.) [1 — 4], so it is appropriateuse the concept
"programmer’s handwriting".

The concept "programmer’s handwriting” is difficuld define as we are to find code optional
characteristics that are inherent to a particutaggammer. Programmer’s handwriting can manifestfitin the
architectural solution, for example, in the abusamy design pattern or coding rules, nominatiorvarfiables,
methods, and other structural units of the programgranguage, such as:

— naming of classes, methods and variables, lar#dbles of the method, method parameters;

— the place of initialization the class variableeating unused class methods (i.e. excess predisad
comes from the design, but isn’t used in the curiraplementation);

— the number of comments, the view of commentspthee of comments;

— the length of method names , the use of types;

— the use of transfers;

— the listing of interfaces, but not the use ofypmbrphism;

— the use of a specific template in all the prograrhthe author, a certain standard set of codeignet
that have the same value in all programs of a ipgeogrammer, etc.;

Programmer’s handwriting should first clearly defithe website source code, as well as to find the
handwriting of the author in search problems ofjjdlesm. Since under the programmer’s handwriting,also
mean a certain level of supported source code esethtie quality of handwriting has an equivaletdtienship
with the quality of software code. Thus, this cleéeastic simultaneously embraces calculation afecquality,
searching of plagiarism and authorship.

Let's consider the concept "native programming lagg". It is the language the programmer is good at
when creating a software product. And when a prognar happens to write a program in a so-called non-
"native" programming language, the text manifestsr@agrammer’s accent. The programmer’s accent is an
integral part of the programmer's handwriting. llowas the programmer to focus on selection in addito
greater accuracy in search problems of plagiaristhauthorship also conduct statistical researcimignation
programmers with a particular programming languaged the accent allows determining the compliandé w
the negative coefficient coding standards for &t tode, which in turn is the quality of the code.

Heuristic methods for the isolation programmer'seat must allocate a priori set of mandatory and
optional features that are specific to a particglaosgramming language, when reduced to a commas dé
singularities, and the subsequent search for tleegeres in the source code with a great programainguage
of this class. This feature can also assume thertaioty in the case where the source code doematwth any
of the inspected class accents set , even thewi#sshe certain programming language source camewhich
will be analyzed. In this case, it is considereat this not the focus, but a simple ignorancerogpammer.

What is clear is that when searching for a acdeistfgrocess becomes part of the process of defiming
unique programmer’s handwriting. Therefore necdlgsstylistic features of programming is not a pesa to
the action, as it was originally a person can felkhe rules , and it is the task of searching timpleasis goes
into searching programmer’s handwriting. When coma@ato the literary language, such programmers are
illiterate. The latter assumption allocates anothetric —-programmer’s literacy

118

MATERIALS OF VI JUNIOR RESEARCHERS’ CONFERENCE 2014
ICT, Electronics, Programming

Literacy of programmer is accordance of source d¢bhdeprogrammer to standards proposed and widely
used for a specific language. This problem is irtgoay for example, in hiring and monitoring the lifyaof
software code. Solution of the problem reducesetieminining the criteria of literacy, layout and mer serial
programmer check code for compliance. The rules imelyde naming of variables, functions, or methaasl
then adopted language syntax token sequence. utdshtso be noted immediately that the design rde®ne
language do not match the rules of registrationdoother. Because of this, and there is emphasithen
transition from one programming language to another

Programmer’s literacy, on the one hand, is the sippaharacteristics to the accent of programmang,
the other — an integral part of programmer’s haiititvg determines its quality. But beyond that litey
determines the correctness of the instructionsraled that are characteristic for most programnémguages.

Programmer’s handwriting covers all other charésties, but not uniquely determines the uniqueussat
that is typical for this programmer. This featusecialled the unique style of the programmer whd bé
calculated by finding the unique performance charistics and previously considered to have botitiye and
negative tendency to change the quality of thecsapde. Typical metrics that reflect the uniqudesof the
programmer can be non-standard commenting souide, ealding his own prefixes and suffixes to thesda’
names, methods and variables.

A distinctive feature of this characteristic isttitacan be deliberately varied by programmer hifngénis
characteristic can be specifically introduced by fmogrammer for the protection of its source codmu can
also divide a programming style for good and baith weéspect to the rules of registration code, retbpaly, and
the quality of software code. And in this conteahoonly mean bad that the author of the sourceiserbt
specifically follows the general rules of the pragming language , maintains its own because ofréagte , or
to leave a unique code. Good style is considerstyla that is not contrary to the rules of registra but has
redundant comments or instructions that are hakmaf the author.

Positive dynamic of these characteristics is propoal to the lowest programmer’s accent, zero
indicators unique style of programmer, high litgraate programmer and other indicators of good @umgner’s
handwriting. Is proposed that the code "clean't ifsi particularly ideal for solving the problem. &main
difficulty in finding this criterion — are predefd ideal solution that is utopian. It is therefpreposed to use
this feature only to specific instructions and ctiemre with design patterns.

Features of team programming. Modern high-loadgmtsj are the result of working of not one, but a
group of programmers. These can be developed awadepunrelated modules and one class (as a syntax
language unit) by team. This feature may requireguef the above metrics are not one the progranandrto
the team. In this case, it will be a general charéatic of the average of all team members. Atsthe case of
team programming, if they are known to work evemygpammer and prefilled reference characteristicsefch
programmer, it will be possible to carry out anedyen the percentage of participation in writing 8ource code
each programmer in the team.

Another feature of the team programming is a diffiérskill levels every programmer that is expressed
a variety of characteristics, namely indicatorshahdwriting, literacy, accent, etc. This featurlowas you to
define the maximum and minimum, and to measurechiaacteristics of the dynamics of change in theeeco
This figure will more accurately allocate the ovedynamics of changes in indicators of the tearangfing its
participants.

Also it is worth noting that this feature of thee programming is in conjunction with the developime
of migration between manufacturing companies artlvaoe generates precedents plagiarism. It is stded
that the proposed non-standard characteristicseaboftware code after their implementation candaatified
and such copyright infringement.

REFERENCES

1. Analysis of Algorithms for plagiarism detection @odes of programs written in high level languageMaédern

techniques and technologies: XVIII Intern. scigotffractical. conf. [Electronic resource]. — 2012.Mode of access:
http://www.lib.tpu.ru/fulltext/v/IConferences/2012/(2/v2_212.pdf. — Date of access: 10.07.2013.

2. Identification of duplication and plagiarism in tseurce application // Institute of Control Sciengeoblems [electronic
resource]. — 2005. — Mode of access: http://lap@8u/projects/conf2006/ 1/15.htm. — Date of acc22$8.2013.

3. Search for plagiarism in source programs // Belarustate university [electronic resource]. — 261Mode of access:
http://www.fpmi.bsu.by/ImgFpmi/Cache/36173.pdf. t®af access: 03.09.2013.

4. Software complexity metrics as criteria for evaiogtplagiarism in source programs // Proceedingshef Intern.

scientific-practical conference [Electronic res@jrc — 2012. — Mode of access of the: http:/wwwi@pr

nauka.ru/uploads/files/RIBANOVK®G.pdf. — Date of as£e25.09.2013.

119

