формирование композиционной структуры слоя при ионном осаждении из водных растворов

А.С. Калиниченко, В.А. Калиниченко

Белорусский национальный технический университет, Минск

Разработка технологических основ получения композиционной структуры основывается на выборе оптимальных параметров процесса и способов внедрения упрочняющих частиц. Упрочняющие частицы можно условно разделить на две группы: металлические и неметаллические. Исходя из этого варьируется также и процесс ввода вышеуказанных частиц в осаждаемую поверхность. Металлы могут легко переходить на подложку из растворов их солей, в то время как неметаллы лишены такой возможности. Общепринятым для гальванических процессов является внедрение неметаллов в плакированном виде. Однако не все материалы легко поддаются плакировке, как результат остро стоит потребность ввода неплакированных упрочняющих элементов. Данный процесс может быть реализован при высоких скоростях осаждения с большой интенсивностью перемецивания соляной ванны с находящейся в ней взвесью упрочняющих элементов.

Данная технология может быть применима для создания абразивного инструмента — наполненного КМ, в котором использованы природные и синтетические алмазы, нитриды бора, кремния, титана, карбиды и силициды. Например, для производства сепарационных дисков толщиной от 100 мкм и диаметром от 10 мм (рис. 1, a), трубчатых сверл диаметром от 1,0 мм (см. рис. 1, 6) и др.

Известно, что разработка схем и методов внедрения частиц в осаждаемый слой напрямую зависит от типа частиц. К тому же важным параметром при вводе дополнительных частиц является регулирование процессов по силе тока и напряжению, а также создание оптимальных условий для осаждения конкретного компонента при реализации процесса создания готового изделия или заготовки с определенными свойствами. На рис. 2 показан образец резца, сочетающий в себе целый ряд осажденных материалов, таких как никель и кубонит, осажденные на латунной подложке.

Для изготовления опытного образца применялась методика частичной изоляции поверхности осаждения. Метод был выбран по причине невозможности совместного осаждения никсля и кубонита. Латунная основа была покрыта изоляционным лаком в местах, где не планировалось осаж-

дение кубанита. После промывки изделия от лака и смены электролита было проведено осаждение никеля на всю поверхность образца. После шлифовки было получено окончательное изделие.

Рис. 1. Сепарационный диск (a), трубчатое сверло (δ)

Рис. 2. Образец резца: 1 – никель; 2 – кубонит; 3 – латунная подложка

При ионном осаждении композиционых материалов подложки или покрываемые изделия помещают в соляной раствор с малой кислотностью, содержащий соли осаждаемых компонентов, и соединяют с отрицательным полюсом трансформатора постоянного тока. В качестве анода используются пластинки или прутки из осаждаемых металлов. По сравнению с другими способами осаждения данный способ имеет ряд значительных преимуществ: возможность получения покрытий строго определенного и контролируемого состава, свойств и толщины, меньший расход растворимых анодов, повышенные механические и коррозионные свойства покрытий, благодаря реверсной технологии отсутствие промежуточного хрупкого слоя.

В отличие от обычных методов при ионном осаждении из водных растворов должен использоваться метод повышенных концентраций. Супего состоит в превышении концентрации внедряемых упрочняющих частиц в растворе по сравнению с количеством, необходимым в упрочняемом слое. Это обусловлено тем, что не все частицы имеют равную электропроводность, и как результат, только часть из них может активно внедриться! осаждаемый слой. Также необходимо учитывать оптимальную и достаточную концентрацию вводимых упрочняющих частиц. Следует отметить, что размер частиц упрочняющей фазы тоже играет значительную роль в каче стве покрытий. В то время как мелкие частицы равномерно распределяются по объему, крупные включения создают искажения тока нагрузки! приводят к изменению структуры осаждаемого металла основы и дефекты слоистости. Как результат, в районе малоразмерных частиц образует мелкозернистый слой металла, и их ввод допустим до 30 %, в то время в

при наличии крупных частиц, ввиду искажения металлической матрицы, их ввод не должен превышать 10-15% от массы осаждаемой композиции.

Для придания высокой износостойкости чугунным пластинам для дробеметов на Жодинском заводе тяжелых штампов на них были нанесены покрытия на основе Fe-Co сплава. Как показали микроструктурные исследования (рис. 3), высокие токовые нагрузки, к примеру, 8 А на 1 см², повышают размер зерна нанесенного покрытия в 2 – 3 раза, что ведет к снижению износостойкости. В результате выбора параметров было выяснено, что матрица наиболее эффективно упрочняется на малых токах.

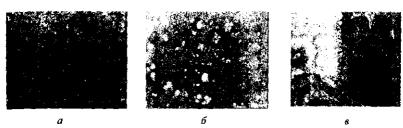


Рис. 3. Распределение наросшего зернового Fe-Co споя на хромистом чугуне при токах: $a - 2A \ (\times 100); \ begin{subarray}{l} 6 - 2A \ (\times 200); \ e - 8A \ (\times 100) \ \end{array}$

Аналогичные исследования были проведены с никелевой матрицей. Видно, что при меньших значениях силы тока слои лежат более равномерно (рис. 4), чем при больших величинах токовой нагрузки, где наблюдается напряженность слоя и его отслаивание (рис. 5). Заметно, что второй и последующие слои роста (см. рис. 4) имеют большее количество включений и неравномерностей по сравнению с первым слоем. Управление структурой – один из основополагающих процессов при ионном осаждении. От ориентации, размеров и распределения включений зерна зависят механические свойства получаемых или восстанавливаемых изделий.

Рис. 4. Распределение включений по слоям роста

Рис. 5. Отслоение напряженного слоя

В качестве объектов исследований были выбраны пластины из низкоуглеродистой стали 3. Для обеспечения лучшего сцепления осажденного слоя с подложкой пластины были изначально активированы методом реверсивных токов. После чего на них было нанесено первичное покрытие на основе железа. Как видно из рис. 6, первичный рост покрытия шел в виде образования столбчатых кристаллов. Вторым этапом, для придания высокой износостойкости стальным пластинам, были нанесены покрытия на основе Fe-Co сплава

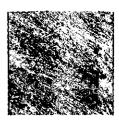


Рис. 6. Образование столбчатых кристанлов на новерхности активизированного электротехнического железа: $a = \times 50$; $\delta = \times 100$; $\theta = \times 400$

Для поддержания оптимального размера зерна были выбраны следующие параметры: токовая нагрузка 4 А на 1 см², время осаждения 1 ц рН электролита 3. Как показали микроструктурные исследования (рис. 7), при данных параметрах получается стабильный размер зерна с включениями износостойкой интерметаллидной фазы. При этом твердость полученного покрытия (при изучении на оптическом твердомере в г. Жодию) ориентировочно составила НВ = 280.

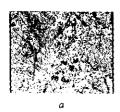


Рис. 7. Осажденный слой железо-кобальт на железной матрице: $a = \times 200; \delta = \times 400$

По результатам проведенных исследований выяснено, что данну тип покрытий может быть использован для упрочнения стальных и чугу ных изделий для повышения их износостойкости, а также для ремонта в ношенных поверхностей.

МИКРОСТРУКТУРА БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВОВ СИСТЕМЫ ИНДИЙ-ЦИНК

Ван Цзин Цзе, В.Г. Шепелевич

Белорусский государственный университет, Минск

Введение. Ограничения на использование легкоплавких сплавов, солержащих вредные для здоровья компоненты (свинец, кадмий, таллий и ртуть), вызывают необходимость проведения исследований по созданию новых материалов, в которых вышеуказанные компоненты заменены менее опасными. К числу таких заменителей относятся олово и индий. В связи с болсе высокой стоимостью индия и олова целесообразно легкоплавкие материалы на их основе получать ресурсосберегающими технологиями, к которым относится, например, высокоскоростное затвердевание. При скоростях охлаждения 10⁵ К/с и выше в сплавах формируется микрокристаллическая структура и образуются дисперсные выделения частиц легирующих элементов, что оказывает существенное влияние на их механические и физические свойства [1, 2]. В связи с этим получение и исследование структуры и свойств легкоплавких сплавов на основе индия, полученных высохоскоростным затвердеванием, имеют практическое и научное значение. В данной работе представлены результаты исследования микроструктуры быстрозатвердевших фольг сплавов системы индий-цинк.

Методика эксперимента. Сплавы системы индий-цинк, содержащие до 4 ат. % Zn, получены сплавлением компонентов, чистота которых не хуже 99,999 %, в кварцевой ампуле. Быстрозатвердевшие фольги сплавов получены кристаллизацией капли расплава на внутренией полированной поверхности вращающегося медного щилиндра. Микроструктура фольг исследована с помощью растрового микроскопа LEO 1455VP фирмы «Карл Цейс». Ренгеноспектральный микроанализ проводился с использованием энергодисперрсного SiLi-полупроводникового детектора фирмы «Rontec» (Германия). Рентгеноструктурные исследования выполнены на дифрактометре ДРОН-3 в медном излучении. Для исследования текстуры использовались дифракционные линии 002, 110, 112, 200, 103, 211, 202 и 213. Их полюсные плотности р рассчитывались по методу Харриса [3].

Результаты и их обсуждение. При высокоскоростном затвердевании сплавов системы индий-цинк получаются фольги длиной до 10 см и шириной до 1 см. При исследовании структуры и микротвердости использовались фольги толщиной 30 — 70 мкм. Поверхность фольги (A), при-