КОМПОЗИЦИОННЫЕ ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СМЕСЕЙ ТЕРМОПЛАСТОВ

А.С. АНТОНОВ, В.А. СТРУК, С.В. АВДЕЙЧИК, А.Н. ЛЕСУН, П.В. КЛОЧКО

Гродненский государственный университет имени янки Купалы, г. Гродно, Республика Беларусь

Рассмотрены механизмы формирования структуры композитов на основе полимерных смесей с различной термодинамической совместимостью компонентов. Разработаны составы нанокомпозитов на основе смесей термопластов для изготовления изделий и покрытий, используемых в конструкциях автокомпонентов, ленточных конвейеров, крепежных элементов, элементов дорожных и строительных конструкций.

Современные конструкционные, триботехнические материалы на основе промышленных термопластов являются полноценной альтернативой традиционным композитам на основе металлических матриц. Особый интерес в номенклатуре функциональных материалов представляют композиции, полученные совмещением термопластов различного состава, молекулярной массы и строения благодаря достижению синергических сочетаний эксплуатационных характеристик.

При совмещении компонентов с близким строением молекулярной цепи и молекулярной массой одного порядка определяющее значение в формировании структуры композита с необходимыми и достаточно стабильными параметрами эксплуатационных характеристик имеют реологические характеристики матричного и модифицирующего полимера. Различие в вязкости приводит к образованию гетерофазной структуры различного типа. При введении высоковязкого полимера (СФД, ДСТ, ТПУ, ПЭНД, АБС) в низковязкий (ПА6, ПП) образуется гетерогенная структура с выраженным разделением фаз легирующего компонента в матричном связующем [1]. Дисперсные фрагменты расплава модификатора под действием напряжений сдвига при вращении шнека смесителя распределяются в низковязкой матрице с образованием характерной многофазной структуры. При таком совмещении образование межфазных слоев на границе раздела «матрица – модификатор» носит фрагментарный характер и не определяет значения параметров служебных характеристик (σ_p , *УУВ*, σ_{cm}). Дисперсные фрагменты модифицирующего полимера с размером 10–150 мкм выполняют функцию армирующего (СФД, АБС) или структурного модификатора, снижающего остаточные напряжения в образце композита благодаря выраженной гибкости цепи и более низкой температуре плавления (ТПУ, ДСТ, ПЭНД). Степень диспергирования легирующего полимера в матричном определяется преимущественно параметрами смешения (температура, время, интенсивность (скорость) движения шнека) и соотношением компонентов. При соотношениях матричный полимер: модификатор 1,0:0,01–0,10 формируется достаточно гомогенная гетерофазная структура с повышенными параметрами служебных характеристик [2].

При введении в высоковязкую матрицу (ТПУ, ДСТ, МПЭУ) относительно низковязкого модификатора (ПА6, СФД, АБС) формируется гетерофазная структура с высокой степенью гомогенности, характерной чертой которой является образование модифицирующих элементов различной формы и размеров. Относительно вязкие модификаторы (АБС, СФД) образуют в матричном связующем (ТПУ, ДСТ, МПЭУ) фрагменты в размерном диапазоне 1—120 мкм с выраженной локализацией. Эти фрагменты, размер которых зависит от соотношения матричного и легирующего компонентов, имеют преимущественно сферическую форму, обусловленную, очевидно, корреляцией температур плавления (перехода в вязко-текучее состояние). Интенсивность термомеханического воздействия на смесь ДСТ — ПА6 существенно влияет на параметры деформационно-прочностных, триботехнических и теплофизических характеристик [3].

При термомеханическом совмещении матричного и легирующего компонентов с близким строением молекулярной цепи и величиной молекулярной массы – алифатических полиамидов (ПА6, ПА6.6, ПА12, ПА11), полиолефинов (ПП, ПЭНД, ПЭВД, СЭВА), фторопластов (ПТФЭ, УПТФЭ, фторсодержащие олигомеры) – формируется гетерофазная структура с повышенной гомогенностью.

При совмещении алифатических полиамидов с различными теплофизическими параметрами (T_{nn} , $T_{o\kappa}$, T_{o}) и близким молекулярным строением – полиамидов ПА6, ПА6.6 с ПА12, ПА11 – возможна реализация двух характерных особенностей. Легирование высокоплавкого полиамида (ПА6, ПА6.6) низкоплавким (ПА11, ПА12) позволяет снизить остаточные напряжения в образце (или покрытии) благодаря сохранению жидкофазного состояния легирующего компонента после кристаллизации матричного. Экспериментально рассмотренный механизм влияния низкоплавкого модификатора в системе ПА6 (ПА6.6) – ПА11 (ПА12) подтверждается повышением параметров деформационно-прочностных характеристик композита по сравнению с характеристиками матричного полимера при введении в состав компонента с заведомо более низкими значениями параметров σ_p , $\sigma_{c,\kappa}$, E. Аналогичные эффекты отмечены для композиций ПА6.6 – ПА6, ПП – ПЭНД, ПП – ПЭВД, ПЭНД – ПЭВД [4].

При введении в полимерные смеси наноразмерных модификаторов различного состава, строения и технологии получения (УДА, УДАГ, слоистых силикатов, порошков металлов и оксидов) реализуется эффект компатибилизации, в результате чего увеличивается совместимость матричного и легирующего термопласта, что благотворно сказывается на повышении параметров прочностных, триботехнических характеристик и стойкости к термоокислительной деструкции [5]. Низкоразмерные частицы, проявляющие наносостояние, выполняют функцию регуляторов реологических ха-

рактеристик вследствие формирования как внутри, так и межмолекулярных связей, в том числе межмолекулярных связей в граничном слое, что способствует повышению термодинамической совместимости компонентов [5].

Рассмотренные аспекты механизмов формирования структуры композиционных материалов на основе полимерных смесей с различной термодинамической совместимостью компонентов позволили разработать гамму машиностроительных материалов для изготовления конструкционных и триботехнических изделий и покрытий, используемых в конструкциях автокомпонентов (карданных валов, тормозных камер, автомобильных амортизаторов), технологической оснастки (токарных патронов), ленточных конвейеров для транспортирования сыпучих и кусковых материалов (металлополимерных роликоопор), крепежных элементов (дюбелей), элементов дорожных и строительных конструкций (указательных и обозначающих элементов, бордюрных элементов, элементов напольных и грунтовых покрытий). Составы композитов и технологии их получения защищены рядом патентов на изобретения.

ЛИТЕРАТУРА

- 1. Конструкционные и электротехнические материалы: учеб. пособие / В. А. Гольдаде [и др.]; под ред. В. А. Гольдаде, В. А. Струка. Минск: РИВШ, 2022. 536 с.
- 2. Гольдаде, В. А. Ингибиторы изнашивания металлополимерных систем / В. А. Гольдаде, В. А. Струк, С. С. Песецкий. М.: Химия, 1993. 240 с.
- 3. Кравченко, В. И. Карданные передачи: конструкции, материалы, применение / В. И. Кравченко, Г. А. Костюкович, В. А. Струк; под ред. В. А. Струка. Минск: Тэхналогія, 2006. 410 с.
- 4. Антонов, А. С. Композиционные материалы на основе смесей термопластов для повышения эксплуатационного ресурса элементов технологического оборудования: дис. ... канд. техн. наук: 05.16.09 / А. С. Антонов. Минск, 2018. 200 с.
- 5. Авдейчик, С. В. Фактор наносостояния в материаловедении полимерных нанокомпозитов : монография / С. В. Авдейчик, В. А. Струк, А. С. Антонов. — Saarbrücken : LAP LAMBERT Acad. Publ., 2017. — 468 с.