СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ И АДГЕЗИОННАЯ ПРОЧНОСТЬ ВАКУУМНО-ДУГОВЫХ ПОКРЫТИЙ TIN, НАНЕСЕННЫХ НА РАЗЛИЧНЫЕ СТАЛИ

В.А. КУКАРЕКО, А.В. КУШНЕРОВ Объединенный институт машиностроения НАН Беларуси, г. Минск, Республика Беларусь Н.Н. ПОПОК, Д.А. БАШЛАЧЕВ Полоцкий государственный университет имени Евфросинии Полоцкой, г. Новополоцк, Республика Беларусь

Исследовано структурно-фазовое состояние, измерена нанотвердость и критическая нагрузка отслаивания Lc вакуумно-дуговых покрытий TiN, нанесенных на подложки из сталей AISI 304, 9XC и P6M5. Установлено, что в фазовом составе покрытия TiN регистрируются дифракционные линии от TiN и Ti. Нанотвердость покрытий составляет 29 ГПа. Показано, что Lc для покрытия TiN, нанесенного на подложку из стали AISI 304 составляет Lc = 9,8 H, 9XC – Lc = 12,8 H, P6M5 – Lc = 36,3 H. Сделано заключение, что высокое значение нагрузки отслаивания для покрытия на стали P6M5 связано с повышенной твердостью стали P6M5 и присутствием в фазовом составе подложки карбидов MC, имеющих изоморфную решетку с покрытием TiN.

Введение. Технологии вакуумного напыления (PVD) широко применяются для формирования покрытий различного функционального назначения, обеспечивающих повышение стойкости инструмента, износо- и коррозионной стойкости рабочих поверхностей деталей машин и оборудования, работающих в условиях абразивного и адгезионного изнашивания, ударно-циклических нагрузок, высоких температур, а также воздействия агрессивных сред. Наиболее эффективным способом формирования требуемых свойств приповерхностных слоев материала без изменения заданных значений свойств, является нанесение износостойких покрытий [1-3]. Методы физического осаждения, позволяют реализовать процессы нанесения при температурах 25-800 °C [4,5], обеспечивая возможность их применения как для аустенитных (AISI 304), так и для быстрорежущих сталей (P6M5).

В настоящее время для повышения срока службы инструмента хорошо зарекомендовали себя покрытия из нитридов титана, имеющие улучшенные характеристики (повышенные твердость, износостойкость, коррозионную и термическую устойчивость) благодаря формированию в них нанокристаллической структуры [6,7]. Перспективным способом получения наноструктурных покрытий являются методы вакуумно-дугового осаждения [4-5,8-9]. Адгезионная способность покрытий является основным критерием качества покрытий, в большей степени влияющим на их эксплуатационные свойства [10]. Для оценки адгезионных свойств между покрытием и подложкой применяется метод склерометрии [11]. Целью настоящей работы является исследование структурно-фазового состояния и определение нагрузки отслаивания покрытий TiN, нанесенных на различные подложки.

Материалы и методы исследования. Объектом исследования являются образцы покрытий TiN, сформированные методом вакуумно-дугового осаждения на подложках из сталей AISI 304 твердостью 290 HV 10, 9XC – 270 HV 10 и P6M5 – 830 HV 10. Покрытия наносились методом вакуумно-дугового осаждения на установке модели PVM-0,5FN. Режим нанесения: ток – 85A, температура – 190 °C, давление – 3*10⁻³ МПа, время нанесения покрытия – 30 мин. Толщина покрытий составляет порядка 1-2 мкм.

Рентгеноструктурный анализ проводился на рентгеновском дифрактометре POWDIX 600 в монохроматизированном СоКα излучении, при напряжении 30 кВ и анодном токе 10 мА. Съемки осуществлялись в непрерывном режиме со скоростью 0,01 град/с. Для расшифровки фазового состава используется картотека PDF-2. При обработке данных рентгеноструктурного анализа используются программы автоматизированного программного комплекса «Crystallographica Search-Match» и «High Score Plus Demo».

Измерение нанотвердости и модуля упругости проводилось на нанотвердомере Nano Hardness Tester (NHT2) фирмы CSM Instruments с алмазным индентором Берковича по методике Оливера и Фарра [12,13]. Нагрузка на индентор составляла 5 г.

Для определения нагрузки отслаивания (*L*c) покрытий TiN от подложек, проводились испытания методом скретч-тестирования на трибометре MFT-5000. К поверхности образца с покрытием подводился индентор Роквелла, алмазный наконечник с радиусом при вершине 20 мкм и углом 120°. Далее индентор перемещался по испытуемой поверхности на расстояние 3 мм и одновременно прикладывалась постепенно увеличивающаяся нагрузка в пределах от 1 до 50 Н. В итоге на поверхности формировалась канавка (царапина) переменной глубины. Скорость нагрузки индентора и перемещения индентора с увеличивающиеся нагрузкой составляла 50 Н/мин и 3 мм/мин, соответственно. По результатам регистрации акустической эмиссии определялась нагрузка отслаивания (*L*с) покрытия от подложки, которая фиксировалась по первым высокоамплитудным всплескам акустической эмиссии [14,15].

Результаты и их обсуждения. Рентгеновские дифрактограммы покрытий TiN, нанесенных на подложки из сталей AISI 304, 9XC и P6M5 представлены на рисунке 1. В фазовом составе покрытия регистрируются линии от нитрида титана TiN с ГЦК решеткой типа NaCl и титана Ti с ГПУ решеткой. Присутствие на дифрактограммах линий Ti связано с наличием капельной фракции в распыляемом титане. Параметры кристаллической решетки фазы TiN составляют a = 0,4249 нм (подложка из стали AISI 304), a = 0,4246нм (подложка из стали 9XC), a = 0,4247 нм (подложка из стали P6M5). Величина физического уширения дифракционных линий 220 фазы TiN составляет $\beta_{220} \approx 34 \cdot 10^{-3}$ рад. Нанотвердость покрытий TiN ≈ 29 ГПа. Значения модуля упругости покрытия на разных сталях составляет: E = 407 ГПа на стали AISI 304, E = 485 ГПа на стали 9XC, E = 360 ГПа на стали P6M5. На дифрактограммах исследуемых покрытий присутствуют дифракционные линии фаз γ -Fe и α -Fe (покрытие на стали AISI 304), α -Fe и Fe₃C (покрытие на стали 9XC), α -Fe и карбиды (M₆C, MC) (покрытие на стали P6M5).

рисунке представлены Ha 2 результаты проведения скретчтестирования для покрытий TiN в виде графиков зависимости приложенной нагрузки на индентор (DAQ.Fz), коэффициента трения (DAQ.COF) и акустической эмиссии (DAQ.AE) от продолжительности (нагрузки) испытаний (Timestamp). Для покрытия TiN, нанесенного на подложку из стали AISI 304, значение нагрузки отслаивания составляет 9,8 Н (рисунок 2а), на подложке из стали 9XC – 12,8 H (рисунок 2б), а на подложке из стали P6M5 – 36,3 H (рисунок 2в). Коэффициент трения покрытия TiN составляет $f \approx 0.25$. При увеличении нагрузки вдавливания, происходит увеличение коэффициента трения до f \approx 0,30-0,55, что связано с внедрением индентора в материал подложки. В дальнейшем, по мере возрастания нагрузки, значение f сохраняется на этом уровне до конца испытаний.

Таким образом, наибольшая нагрузка отслаивания (*L*c) регистрируется для покрытия TiN, нанесенного на сталь P6M5. Высокая *L*с может быть связана с относительно низкой пластической деформацией твердой подложки из стали P6M5, а также с присутствием в ее составе частиц MC-карбида [16]. Карбиды MC имеют одинаковую кристаллическую структуру с нитридом

TiN (NaCl), а также близкие значения параметра решетки ($a_{MC} = 0,4165$ нм, $a_{TiN} = 0,4242$ нм). В работах [16,17] сделан вывод о том, что пленки осаждаемого TiN растут эпитаксиально карбидам MC на поверхности быстрорежущей стали, вследствие изоморфности решеток TiN и MC, что обеспечивает низкое значение межфазной энергии, и высокий уровень нагрузки отслаивания. Кроме того, относительно более низкие значения нагрузки отслаивания покрытий TiN, нанесенных на подложки из сталей AISI 304 и 9XC могут быть связаны с низкой прочностью сталей, что приводит к пластической деформации подложки при испытаниях [18].

Заключение. Исследовано структурно-фазовое состояние, измерена нанотвердость и критическая нагрузка отслаивания вакуумно-дуговых покрытий TiN, нанесенных на подложки из сталей AISI 304, 9XC и P6M5.

Установлено, что в фазовом составе покрытия TiN регистрируются фазы TiN и Ti. Показано, что параметры кристаллической решетки фазы TiN составляют a = 0,4249 нм (сталь AISI 304), a = 0,4246 нм (сталь 9XC), a = 0,4247 нм (сталь P6M5). Установлено, что нанотвердость покрытий составляет 29 ГПа. На дифрактограммах исследуемых покрытий наряду с линиями от TiN присутствуют дифракционные линии от фаз γ -Fe, α -Fe, Fe₃C, M₆C и MC, содержащихся в подложках из сталей AISI 304, 9XC и P6M5, соответственно.

Показано, что для покрытия TiN, нанесенного на подложку из стали AISI 304, значение критической нагрузки отслаивания составляет Lc = 9,8 H, на подложку из стали 9XC – Lc = 12,8 H, на подложку из стали P6M5 – Lc = 36,3 H. Сделано заключение, что высокое значение нагрузки отслаивания для покрытия, сформированного на стали P6M5, связано с повышенной твердостью стали P6M5 и присутствием в фазовом составе стали карбидов MC, имеющих изоморфную решетку с покрытием TiN.

ЛИТЕРАТУРА

1. Кирюханцев-Корнеев, Ф.В. Научные и технологические принципы нанесения покрытий методами физического и химического осаждения: методы получения и исследования покрытий: практикум / Ф.В. Кирюханцев-Корнеев – М.: Изд. Дом МИСиС, 2015. – 56 с.

2. Табаков, В.П. Тонкопленочные многослойные покрытия побеждают трещины / В.П. Табаков, М.Ю. Смирнов, А.В. Циркин // РФФИ. Разд. Фундаментальные исследования инженерных наук. – 2007. – С. 1-7.

3. Сутягин, В.В. Повышение ресурса концевого инструмента за счет применения нанокомпозитных PVD-покрытий при обработке титан сплавов в авиастроении / В.В. Сутягин, С.А. Сайкин // Упрочняющие технологии и покрытия. – 2008. – № 5. – С. 41-44.

4. Емельянов, В.А. Вакуумно-плазменные способы формирования защитных и упрочняющих покрытий / В.А. Емельянов, И.А. Иванов, Ж.А. Мрочек – Мн.: Бестпринт, 1998. – 234 с.

5. Дороднов, А.М. О физических принципах и типах вакуумных технологических устройств / А.М. Дороднов, В.А. Петросов // Журнал технической физики. – 1981. – Т. 5, № 3. – С. 504-524.

6. Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness / J. Musil // Surf. Coat. Technol. – 2012. – Vol. 207. – P. 50-65.

7. Gleiter, H. Nanocrystalline materials / H. Gleiter // Progress in Materials Science. – 1989. – Vol. 33, № 4. – P. 223–315.

8. Ivasishin, O. M. Nanostructured layers and coating formed by ion-plasma fluxes in titanium alloys and steels / O. M. Ivasishin, A. D. Pogrebnjak, S. N. Bratushka – Kyiv: Akademperiodyka, 2011. – P. 285

9. Азаренков, Н.А. Вакуумно-плазменные покрытия на основе многоэлементных нитридов / Н.А. Азаренков [и др.] // Металлофизика и новейшие технологии. – 2013. – 35, N 8. – Р. 1061–1084.

10. Константинов В.М. Адгезия покрытий Ті-N на модифицированной стальной подложке / В.М. Константинов, Г.А. Ткаченко, А.В. Ковальчук // Металлургия: республи-

канский межведомственный сборник научных трудов. – Минск: БНТУ, 2014. – Вып. 35. – С. 272-281.

11. Кравчук К.С. Измерение трибологических свойств покрытий и композиционных материалов на субмикронном и нанометровом масштабах: диссертация на соискание ученой степени канд. тех. наук. 01.04.07 / К.С. Кравчук – Москва, 2015. –138 с.

12. Oliver, W.C. An Improved technique for determining hardness and elastic modulus using load and dis-placement sensing indentation experiments / W.C. Oliver, G.M Pharr // Journal Materials Research – 1992. – Vol. 7, No. 6. – P. 1564-1583.

13. Oliver, W.C. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology / W.C. Oliver, G.M Pharr // Journal of Materials Research. – 2004. – Vol. 19, No. 1. – P. 3-20.

14. Трегубов, И.М. Адгезионная прочность композитных покрытий на основе железа / И.М. Трегубов, М.Ю. Смолякова, М.А. Каширин // Вестник Воронежского государственного технического университета. Технологии материалов. – Воронеж, 2016. – С. 92-96.

15. Определение адгезионной прочности Mo-Ti-N и Mo-Cu-N покрытий на установке «скретч-тестер» / В.М. Анищик [и др] // Приборы и методы измерений. – 2015. – № 1 (10) – С. 81-86.

16. Helmersson, U. Adhesion if titanium nitride coatings on highspeed steels / U. Helmersson [et. al.] // Journal of Vacuum Science & Technology A. – 1985. – Vol. 3, No. 2. – P. 308-315.

17. Hultman, L Initial growth of TiN on different phases of high speed steel / L. Hultman [et. al.] // Thin Solid Films. – 1985. – Vol 124. – P. 163-170.

18. Stallard, J. The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester / J. Stallard, S. Poulat, D.G. Teer // Tribology International. – 2006. – Vol.39. – P. 159-266.