ВЛИЯНИЕ ПРОЦЕНТНОГО СОДЕРЖАНИЯ АКТИВАТОРА AIF₃ НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ ХРОМИРОВАННЫХ ДИФФУЗИОННЫХ СЛОЕВ

А.М. ДОЛГИХ, А.П. АНДРУКОВИЧ, Л.Н. КОСЯК, В.С. АНИСИМОВ Полоцкий государственный университет имени Евфросинии Полоцкой, г. Новополоцк, Республика Беларусь

Защитные покрытия различного типа все более широко применяются в современной промышленности. Поэтому исследование эксплуатационных свойств покрытий, к которым относится качество поверхности после насыщения является актуальной задачей, определяющей возможность применения деталей машин с покрытиями без дополнительной механической обработки. Была исследована шероховатость поверхности образцов с нанесенными диффузионным методом защитными однокомпонентными покрытиями на основе карбидов хрома.

Одним из признанных методов повышения эксплуатационных характеристик деталей машин и инструментов является химико-термическая обработка (ХТО), которая радикальным образом изменяет состав и физико-химические свойства поверхностных слоев деталей машин, что позволяет повысить их износостойкость, жаростойкость и коррозионную стойкости [1-3]. Это увеличивает надежность и долговечность машин, тем более что современные требования к этим характеристикам постоянно возрастают.

С учетом того обстоятельства, что настоящее исследование посвящено изучению свойств карбидных диффузионных слоев и того, что наибольшее практическое применение получили карбидные слои на основе карбида хрома.

Процесс диффузионного хромирования проводили в исходной смеси, состоящей из следующих компонентов: хрома окиси (Cr_2O_3 марки «ч» ГОСТ 2912) — поставщика насыщающего элемента (хрома): порошка кремния (KP-1) или силикокальция (СК 25) — восстановителя; оксида алюминия (Al_2O_3 марки «ч») — балластной добавки; аммония хлористого (NH_4Cl марки «ч») — активатора процессов восстановления и насыщения. Процессы диффузионного насыщения проводили в металлических контейнерах по стандартной технологии газового насыщения в порошковых силикотермических смесях.

Шероховатость поверхности деталей машин и механизмов в значительной степени определяет основные эксплуатационные свойства деталей и узлов машин — износостойкость, сопротивление усталости, надежность, контактную жесткость и теплопроводность стыков сопряженных деталей, коррозионную стойкость, герметичность соединений, отражающую и поглощающую способности поверхностей и другие. В качестве измеряемого параметра выбрана среднеарифметическая высота микронеровностей.

Исследуемый состав силикотермической смеси для диффузионного хромирования:

98% [40% Al₂O₃+60% (25% CK25+75% Cr₂O₃)] +2% AlF₃

Исследование диффузионных защитных покрытий, полученных методом химико-термической обработки (хромирования), проводили на образцах, изготовленных из стали марки У10 ГОСТ 1435.

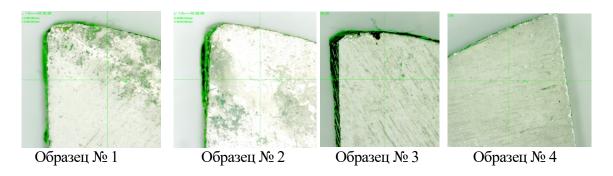


Рисунок 1. — Макрогеометрия поверхности образцов с нанесенными диффузионными хромированными слоями карбидного типа с использованием в качестве активатора процесса насыщения фтористого алюминия AlF₃. Процентное содержание активатора в насыщающей смеси: 1) - 0.2%; 2) - 0.5%; 3) - 1%; 4) - 2%

Проведенный макроанализ поверхности образцов показывает, что максимальное количество несовершенств и коагуляции карбидов хрома наблюдается у образцов с процентным содержанием активатора процесса насыщения AlF_3 , 5% и 1% (рисунок 1).

График имеет устойчивую тенденцию к повышению величины среднеарифметической высоты микронеровностей с увеличением процентного содержания активатора в смеси (рисунок 2).

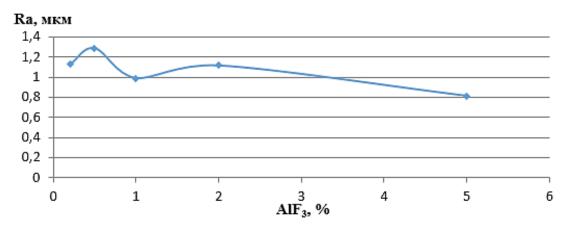


Рисунок 2. – График влияния процентного содержания активатора $A1F_3$ на шероховатость поверхности образцов после нанесения карбидных диффузионных хромированных покрытий

Выводы: 1) Проведенные исследования убедительно показывают, что на параметры шероховатости поверхности, полученные после нанесения покрытий диффузионного типа, существенное влияние оказывает вид применяемого активатора и его процентное содержание в насыщающей смеси; 2)

При проведении процессов диффузионного хромирования характер кривой имеет выраженный максимумом повышения величины шероховатости поверхности; 3) Макроанализ качества поверхности образцов показывает, что на параметры шероховатости поверхности, полученные после нанесения хромированных покрытий диффузионного типа, существенное влияние оказывает процентное содержание активатора AlF₃ в насыщающей смеси.

ЛИТЕРАТУРА

- 1. Восстановление деталей машин: $/\Phi$.И.Пантелеенко [и др.];-М.: Машиностроение, 2003. -672с.
- 2. Многокомпонентные диффузионные покрытия / Под общ. ред. Л.С.Ляховича. Минск: Наука и техника, 1974.-288с.
- 3. Ворошнин Л.Г. Теория и технология химико-термической обработки: учеб. Пособие: Минск: Новое знание, 2010.-304с.