III. Безопасность в чрезвычайных ситуациях

УДК 622.867.322

Степан Григорьевич Ехилевский, д-р техн. наук, профессор; e-mail: <u>ekhilevskiy@yandex.ru</u>; Оксана Валерьевна Голубева, канд. физ.-мат. наук, первый проректор; e-mail: <u>o.golubeva@psu.by</u>; Ольга Николаевна Забелендик, ст. преп.; e-mail: <u>o.zabelendik@psu.by</u> Учреждение образования «Полоцкий государственный университет имени Евфросинии Полоцкой»

211440, Республика Беларусь, Витебская обл., г. Новополоцк, ул. Блохина, 29 Тел.: (+37 529) 219-68-53

КРИТЕРИЙ ПРИРОСТА ЗАЩИТНОГО ДЕЙСТВИЯ ИЗОЛИРУЮЩЕГО РЕСПИРАТОРА С НЕОДНОРОДНО СНАРЯЖЕННЫМ РЕГЕНЕРАТИВНЫМ ПАТРОНОМ

Цель. Повышение эффективности использования защитного ресурса дыхательного аппарата с химически связанным кислородом для оптимизации времени его защитного действия.

Методы. Математическое и компьютерное моделирование динамики сорбции.

Результаты. Для оптимизации респиратора с химически связанным кислородом развит формализм моделирования регенерации воздуха слоем гранул надпероксида калия, диаметр которых меняется в направлении фильтрации выдыхаемого воздуха.

Научная новизна. Показано, что прирост времени защитного действия, определенный периодом критического проскока в замкнутой схеме воздуховодной части, будет равен приросту связанного углерода в открытой схеме.

Практическая значимость. Время защитного действия респиратора с 1350 г кислородосодержащего продукта, работающего в режиме тяжелой физической нагрузки по круговой схеме, увеличится на 25,9 % за счет изменения (скачков) диаметра гранул.

Ключевые слова: *респиратор; динамика сорбции; работающий слой хемосорбента; размер гранул; время защитного действия.*

Постановка проблемы. Изолирующие средства защиты дыхания незаменимы, если в воздухе присутствуют отравляющие вещества или наблюдается недостаток кислорода. С этим приходится сталкиваться при пожаре в замкнутом пространстве (шахте, подводной лодке), когда выгорает или вытесняется кислород и выделяются ядовитые продукты горения.

В описанных ситуациях важны такие характеристики дыхательных аппаратов, как масса, габариты, срок защитного действия, надежность, простота в обслуживании и постоянная готовность к оперативному использованию. По этим показателям предпочтительнее дыхательные аппараты с химически связанным кислородом [1]. В них выдыхаемый углекислый газ поглощается

[©] Ехилевский С. Г., Голубева О. В., Забелендик О. Н., 2023

в процессе фильтрации воздуха через регенеративный патрон, снаряженный пористыми гранулами кислородсодержащего продукта на основе надпероксида калия

$$4KO_2 + 2CO_2 = 2K_2CO_3 + 3O_2 + 360$$
 кДж. (1)

В соответствии со стехиометрией реакции (1) необходимого для нового вдоха кислорода выделяется в 1,5 раза больше, чем связывается углекислого газа. Такая пропорция близка к идеальной для физиологии человека (BS EN 13794:2002 «Respiratory protective devices - Self-contained closed-circuit breathing apparatus for escape - Requirements, testing, marking»). При этом расход зарезервированного в регенеративном патроне кислорода регулируется автоматически в зависимости от физической нагрузки человека, определяющей количество выдыхаемого в единицу времени углекислого газа. Это позволяет без имеющегося в баллонных аппаратах дополнительного обойтись оборудования (легочного автомата и ресивера) [3], упростив, таким образом, конструкцию, снизив вес и повысив надежность изолирующего средства защиты дыхания. Уменьшению массогабаритов способствует и то, что надпероксид калия на три порядка плотнее газа при нормальных условиях. Это обеспечивает более плотную упаковку кислорода в жестяном регенеративном патроне, чем в баллонных дыхательных аппаратах, так как стальные баллоны не выдерживают давления более 250 атмосфер и весят в шесть раз больше своего содержимого. Изложенное позволяет связать главные перспективы совершенствования изолирующих средств защиты дыхания с химическим способом резервирования кислорода [4].

Анализ последних исследований и публикаций. Будучи изолирующим средством защиты, дыхательный аппарат обладает замкнутой схемой воздуховодной части. Это значит, что выдыхаемый воздух (с 4% CO_2), регенерированный в процессе фильтрации через кислородсодержащий продукт, возвращается на вдох. Отравление углекислым газом начинается, когда его содержание во вдыхаемом воздухе превышает 1,5 % [4]. К моменту такого проскока CO_2 через регенеративный патрон замыкающие слои кислородсодержащего продукта выработаны не полностью. Интегральной характеристикой неиспользуемого ресурса регенеративного патрона является ширина «мертвого слоя» сорбента, образованного молекулами надпероксида калия, не вступившими в реакцию до окончания срока защитного действия аппарата. Эта ширина зависит от режима эксплуатации дыхательного аппарата (объемного расхода воздуха) и характеристик кислородсодержащего продукта (пористость и размер его гранул), определяющих кинетику хемосорбции, что обобщенно характеризуется безразмерной длиной регенеративного патрона яр

[5]. В частности, если η < 0,98, проскок CO₂ с самого начала превышает 1,5 % и доля использованного защитного ресурса равна нулю (весь слой хемосорбента оказывается «мертвым» [5]). Таким образом, подтверждается более низкая эффективность использования защитного ресурса в дыхательных аппаратах с небольшим сроком защитного действия.

Вторая причина неэффективного использования защитного ресурса регенеративного патрона – спекание гранул кислородсодержащего продукта под действием выделяющегося в процессе хемосорбции экзотермического тепла согласно реакции (1). Плотность его источников тем выше, чем тоньше «работающий» слой сорбента. Его ширина (при определенных характеристиках гранул хемосорбента) устанавливается с учетом объемного расхода воздуха, величины концентрационного напора углекислого газа и степени отработки поглотительного ресурса. По этим причинам ширина работающего слоя сорбента увеличивается по мере его продвижения в глубь патрона [5]. А значит, максимальная тепловая мощность реализуется в лобовом слое хемосорбента в начале работы дыхательного аппарата.

Для устранения перечисленных причин достаточно увеличить размер гранул в лобовых слоях хемосорбента и уменьшить в замыкающих.

Цель работы – повышение эффективности использования защитного ресурса дыхательного аппарата с химически связанным кислородом для оптимизации времени его защитного действия.

Результаты исследований. Выберем в качестве характерного масштаба объемной концентрации молекул углекислого газа W ее максимальное значение W_0 на входе в рассматриваемый слой хемосорбента, достигаемое после полной отработки предыдущего слоя. Если пренебречь возвратом на вдох проскока CO_2 (моделировать рабочий процесс в регенеративном патроне, подключенном по открытой схеме), W_0 совпадает со значением W в выдыхаемом воздухе. В такой ситуации приведенная концентрация молекул углекислого газа $\omega = W/W_0$ согласно [6] определяется соотношениями

$$\xi(x) = \beta x/\nu, \quad \tau(t) = \beta \gamma t, \tag{2}$$

$$\omega(\xi,\tau) = e^{-\xi-\tau} \sum_{k=0}^{\infty} \frac{f_k(\tau)}{k!} \xi^k , \qquad (3)$$

$$f_{k+1}(\tau) = \int_{0}^{\tau} f_k(\tau) d\tau, \qquad (4)$$

$$f_0(\tau) = e^{\tau} \omega(0, \tau), \tag{5}$$

$$u(\xi,\tau) = e^{-\tau} \int_{0}^{\tau} e^{\tau} \omega(\xi,\tau) d\tau, \qquad (6)$$

- где ξ безразмерная координата (ξ∈[0, η]), соответствующая расстоянию *x* от входа в поглощающий слой;
 - т безразмерное время, соответствующее реальному времени работы фильтра *t*;
 - *v* скорость фильтрации воздуха, м/с;
 - β феноменологическая постоянная, характеризующая скорость хемосорбции [7];
 - γ феноменологическая постоянная, характеризующая ресурс хемосорбции в патроне, однородно снаряженном гранулами среднего диаметра [7];
 - и использованная доля поглотительного ресурса хемосорбента.

Полагая, что уровень физической нагрузки человека не меняется и в регенеративный патрон поступает CO₂ постоянной концентрации ($\omega(0,\tau) = 1$), получим приведенную концентрацию CO₂

$$\omega_{0}(\xi,\tau) = e^{-\xi} \left[1 + \sum_{n=1}^{\infty} \frac{\xi^{n}}{n!} \left(1 - e^{-\tau} \sum_{k=0}^{n-1} \frac{\tau^{k}}{k!} \right) \right],$$
(7)

а затем с помощью уравнения (6) – долю отработанного хемосорбента в патроне без скачка диаметра гранул

$$u_{0}(\xi,\tau) = 1 - e^{-\tau} \left(1 + e^{-\xi} \sum_{n=1}^{\infty} \frac{\xi^{n}}{n!} \sum_{k=1}^{n} \frac{\tau^{k}}{k!} \right),$$
(8)

где индекс 0 – количество скачков диаметра гранул хемосорбента.

Для предотвращения спекания разместим в лобовом слое хемосорбента ($\xi \in [0, \zeta_1]$) гранулы увеличенного размера диаметром 5 мм. При этом β в уравнении (2) нужно заменить на $\alpha_1\beta$, где $a_1 = 16/25$ (равно квадрату отношения прежнего (среднего) диаметра гранул к имеющему место в лобовой части патрона) [5]. В результате с помощью выражений (2) – (7) и функций Хэвисайда θ получим

$$\omega_{1}(\xi,\tau) = \omega_{0}(\alpha_{1}\xi,\alpha_{1}\tau)\theta(\zeta_{1}-\xi) + \omega_{12}(\xi-\zeta_{1},\tau)\theta(\xi-\zeta_{1});$$

$$u_{1}(\xi,\tau) = u_{0}(\alpha_{1}\xi,\alpha_{1}\tau)\theta(\zeta_{1}-\xi) + u_{12}(\xi-\zeta_{1},\tau)\theta(\xi-\zeta_{1}),$$

где для вычисления приведенной концентрации углекислого газа ω_{12} и отработки хемосорбента u_{12} во второй (снаряженной 4-миллиметровыми гранулами) части патрона в формулах (3), (6) ξ следует заменить на $\xi - \xi_1$, в уравнении (5) вместо $\omega(0,\tau)$ подставить $\omega_0(\alpha_1\xi_1, \alpha_1\tau)$, а в выражении (6) вместо ω выражение для ω_{12} . Первый индекс указывает количество скачков диаметра гранул, второй – номер части патрона.

Координата скачка диаметра гранул $\xi_1 = 0,681$ выбрана из условия равенства производных $\partial u_1(0,\tau)/\partial \tau |_{\tau=0} = \partial u_1(\zeta_1 + 0,\tau)/\partial \tau |_{\tau=0} = 0,64$, пропорциональных мощности источников экзотермического тепла на входе в первую и вторую части патрона в начальный момент времени. Важно, что в неразрезанном патроне $\partial u_0(0,\tau)/\partial \tau |_{\tau=0} = 1$, то есть увеличение на 1 мм диаметра гранул в лобовом слое хемосороента на 36 % снижает плотность максимальной мощности источников экзотермического тепла в регенеративном патроне, предотвращая спекание кислородсодержащего продукта.

Безразмерные координаты $\zeta_2 = 1,249, \zeta_3 = 1,693$ и $\zeta_4 = 2,0093$ второго (4...3 мм), третьего (3...2 мм) и четвертого (2...1 мм) скачков диаметра гранул найдены из условия одинаковой мощности источников экзотермического тепла на входе во все (отличающиеся размером гранул) части регенеративного патрона [8]. Для этого формулы (2) – (6) преобразовали к следующему виду:

$$\omega_n(\xi,\tau) = \omega_{n-1}(\xi,\tau)\theta(\zeta_n - \xi) + \omega_{n\,n+1}(\xi - \zeta_n,\tau)\theta(\xi - \zeta_n);$$
(9)

$$u_{n}(\xi,\tau) = u_{n-1}(\xi,\tau)\theta(\zeta_{n}-\xi) + u_{n\,n+1}(\xi-\zeta_{n},\tau)\theta(\xi-\zeta_{n});$$
(10)

$$\omega_{n\,n+1}(\xi,\tau) = e^{-\alpha_{n+1}(\xi+\tau)} \sum_{k=0}^{\infty} \frac{f_{n;\,k}(\tau)}{k!} (\alpha_{n+1}\xi)^k ; \qquad (11)$$

$$f_{n;0}(\tau) = e^{\alpha_{n+1}\tau} \omega_{n-1}(\zeta_n, \tau), \quad f_{n;k+1}(\tau) = \alpha_{n+1} \int_0^{\tau} f_{n;k}(\tau) d\tau;$$
$$u_{nn+1}(\xi, \tau) = e^{-\alpha_{n+1}\tau} \alpha_{n+1} \int_0^{\tau} e^{\alpha_{n+1}\tau} \omega_{nn+1}(\xi, \tau) d\tau,$$

где n = 2, 3, 4, ... ($\alpha_3 = 16/9, \alpha_4 = 16/4 = 4$ и $\alpha_5 = 16/1 = 16$).

В аппарате с круговой схемой воздуховодной части к постоянной составляющей W_0 добавляется проскок CO₂, монотонно возрастающий по мере исчерпания ресурса регенеративного патрона. В результате возникает самосогласованная задача определения искомой функции $\omega(\xi,\tau)$, где черта сверху обозначает замкнутость воздуховодной части. Для ее решения использована итерационная процедура с малым параметром $\omega(\eta,\tau)$.В нулевом

приближении ($\overline{\omega}_{0}(\xi,\tau)=\omega_{0}(\xi,\tau)$) следует вообще пренебречь проскоком. При этом возвращаемся к стационарному граничному условию $\overline{\omega}_{0}(0,\tau)=1$ и $\overline{\omega}(\xi,\tau)\approx\overline{\omega}_{0}(\xi,\tau)$ (см. уравнение (7)). Следующий шаг итерационной процедуры, отвечающий первому приближению ($\overline{\omega}(\xi,\tau)\approx\overline{\omega}_{1}(\xi,\tau)$), заключается в подстановке определяемого формулой (7) проскока в (12)

$$\overline{\omega}_{1}(0,\tau) = 1 + \omega_{0}(\eta,\tau), \qquad (12)$$

и численной реализации рекуррентной процедуры (4). Ее результаты в графической форме представлены на рисунке 1 (кривая 2). Видно, что по мере исчерпания ресурса патрона проскок в круговой схеме увеличивается стремительнее, как и должно быть, так как избежавшие хемосорбции молекулы CO_2 возвращаются на вдох, увеличивая содержание углекислого газа в выдохе. Развиваясь в указанном направлении, процесс все больше отличается от имеющего место в открытой схеме. В результате время наступления критического проскока τ_{κ} углекислого газа уменьшается на 9,8 %. Значению $\eta = 4,426$ соответствует патрон с 1350 г хемосорбента в режиме тяжелой физической нагрузки.

Рис. 1. Эволюция проскока CO₂ через подключенный по круговой схеме регенеративный патрон дыхательного аппарата на химически связанном кислороде (η = 4,426):
1 – по открытой схеме; 2 – по круговой схеме (первое приближение), 3 – по круговой схеме (второе приближение)

Вторая итерация (отвечающая приближению $\overline{\omega}_2(\xi, \tau)$) заключается в подстановке $\overline{\omega}_1(\eta, \tau)$ в формулу (12) вместо $\omega_0(\eta, \tau)$.

В итоге время критического проскока CO₂ уменьшилось еще на 0,7 %, что едва различимо. Кривая 3, отвечающая второй итерации, почти совпадает с кривой 2.

Аналогично можно учесть влияние замкнутости воздуховодной части для патрона с четырьмя скачками диаметра гранул. При этом в качестве нулевого приближения итерационной процедуры следует взять выражения (9) - (11) для n = 4, описывающие проскок CO₂ через неоднородно снаряженный патрон, подключенный по открытой схеме. Поскольку проскок через неоднородно снаряженный патрон меньше, чем через однородный, второй шаг итерационной процедуры не понадобится. А значит, нет необходимости эти шаги индексировать. Поэтому граничное условие на входе в первую часть неоднородно снаряженного патрона примет вид

$$\tilde{\omega}_{11}(0,\tau) = 1 + \omega_4(\eta,\tau), \qquad (13)$$

где первый индекс параметра $\tilde{\omega}$ – количество скачков диаметра гранул, второй – номер части патрона, а волнистая черта сверху в отличие от прямой отражает неоднородность патрона с круговой схемой воздуховодной части.

С учетом (13) соотношения (3) – (5) примут вид

$$f_{1;0}(\tau) = (1 + \omega_4(\eta, \tau))e^{\alpha_1 \tau}, \qquad f_{1;k+1}(\tau) = \alpha_1 \int_0^\tau f_{1;k}(\tau) d\tau, \qquad (14)$$

$$\tilde{\omega}_{11}(\xi,\tau) = e^{-\alpha_1(\xi+\tau)} \sum_{k=0}^{\infty} \frac{f_{1;k}(\tau)}{k!} (\alpha_1 \xi)^k , \qquad (15)$$

где первый индекс функции *f* – номер части патрона.

На вход во вторую часть неоднородно снаряженного патрона поступает проскок через его первую часть. Поэтому по аналогии с (14), (15) запишем

$$f_{2;0}(\tau) = \tilde{\omega}_{11}(\xi_1, \tau) e^{\alpha_2 \tau}; \qquad f_{2;k+1}(\tau) = \alpha_2 \int_0^{\tau} f_{2;k}(\tau) d\tau;$$
$$\tilde{\omega}_{12}(\xi, \tau) = e^{-\alpha_2(\xi+\tau)} \sum_{k=0}^{\infty} \frac{f_{2;k}(\tau)}{k!} (\alpha_2 \xi)^k.$$

Тогда для неоднородно снаряженного патрона с одним скачком диаметра гранул с круговой схемой подключения получаем проскок CO₂

$$\widetilde{\omega}_{l}(\xi,\tau) = \widetilde{\omega}_{l1}(\xi,\tau)\theta(\xi_{l}-\xi) + \widetilde{\omega}_{l1}(\xi-\xi_{l},\tau)\theta(\xi-\xi_{l}).$$

Аналогично можно заметить общую закономерность для неоднородного патрона с несколькими (*n* = 2, 3, 4, ...) скачками диаметра гранул

$$f_{n+1;0}(\tau) = \tilde{\omega}_{n-1}(\xi_n, \tau) e^{\alpha_{n+1}\tau}, \qquad f_{n+1;k+1}(\tau) = \alpha_{n+1} \int_0^\tau f_{n+1;k}(\tau) d\tau, \qquad (16)$$

$$\tilde{\omega}_{n\,n+1}(\xi,\tau) = e^{-\alpha_{n+1}(\xi+\tau)} \sum_{k=0}^{\infty} \frac{f_{n+1;\,k}(\tau)}{k!} (\alpha_{n+1}\xi)^k \,, \tag{17}$$

$$\tilde{\omega}_n(\xi,\tau) = \tilde{\omega}_{n-1}(\xi,\tau)\theta(\xi_n - \xi) + \tilde{\omega}_{n\,n+1}(\xi - \xi_n,\tau)\theta(\xi - \xi_n).$$
(18)

Результаты выполненных по формулам (16) – (18) в среде пакета MathCAD вычислений в графической форме представлены на рисунке 2.

Рис. 2. Проскок CO₂ через регенеративный патрон (η = 4,426):
 1 – открытая; 2 – круговая схема подключения (однородный патрон);
 3 – с четырьмя скачками диаметра гранул в открытой схеме;
 4 – с четырьмя скачками диаметра гранул в круговой схеме

Кривые 1 и 3 построены по формулам (7) и (9) – (11) (n = 4) для открытой схемы. А кривые 2 и 4 – с помощью итерационной процедуры (найдено первое приближение для однородного патрона и неоднородного с четырьмя скачками диаметра гранул с круговой схемой подключения соответственно). Видно, что кривая 3 совпадает с кривой 4 (рис. 2). Причина в том, что благодаря скачкам

диаметра гранул патрон лучше связывает молекулы CO₂ и они практически не возвращаются на вдох, не влияя на концентрацию углекислого газа в выдохе.

В результате в изолирующем аппарате (работающем по круговой схеме) прирост времени наступления критического проскока (расстояние между кривыми 2, 4 (рис. 2)), вызванный четырьмя скачками диаметра гранул, составит 25,9 %, что почти вдвое превышает 13,7 % прироста в открытой схеме (расстояние между кривыми 1, 3 (рис. 2)).

Выводы. Прирост времени защитного действия 25,9 % в изолирующем аппарате с круговой схемой воздуховодной части почти совпадает с увеличением средней загрязненности патрона с четырьмя скачками диаметра гранул, подключенного по открытой схеме (25,2 %). Такое совпадение не случайно, поскольку время наступления критического проскока CO₂ определяется количеством проследовавших в фильтр молекул. А оно в замкнутой схеме равно количеству произведенных в результате жизнедеятельности человека за вычетом сорбированных патроном. Если проскок увеличивается медленнее, значит, загрязненность – быстрее. То есть прирост защитного действия, найденный по времени критического проскока в замкнутой схеме воздуховодной части, будет равен приросту связанного углерода в открытой схеме.

Список литературы / References

1. Гудков, С. В. Преимущества использования изолирующих самоспасателей с химически связанным кислородом в угольных шахтах / С. В. Гудков, В. Г. Матвейкин, Г. Г. Шаповалов // Безопасность труда в промышленности. – 2012. – № 11. – С. 40 – 44.

Gudkov S. V., Matveykin V. G., Shapovalov G. G. Preimushchestva ispolzovaniya izoliruyushchikh samospasateley s khimicheski svyazannym kislorodom v ugolnykh shakhtakh [Benefits of utilization of chemical oxygen self-contained self-rescuers in coal mines]. Bezopasnost truda v promyshlennosti, 2012, no. 11, pp. 40-44. (In Russian)

2. Jolson, J. Underground Self-Rescuer Technology, Past, Present, and Future / J. Jolson // 3^{rd} SCSR Workshop at the MSHA Training Academy on July 25, 2006.

3. Корреляционные связи и асимптотика динамики сорбции в регенеративном патроне изолирующего респиратора / С. Г. Ехилевский, О. В. Голубева, Е. П. Потапенко, О. Н. Забелендик // Безопасность труда в промышленности. – 2022. – № 7. – С. 22 – 28.

Yekhilevskiy S. G., Golubeva O. V., Potapenko Ye. P., Zabelendik O. N. *Korrelyatsionnyye svyazi i asimptotika dinamiki sorbtsii v regenerativnom patrone izoliruyushchego respiratora* [Correlation relations and asymptotics of sorption dynamics in a self-contained respirator regenerative cartridge] *Bezopasnost truda v promyshlennosti*, 2022, no. 7, pp. 22-28. (In Russian)

4. Ехилевский, С. Г. Влияние переменных краевых условий на квазистационарный профиль концентрации CO₂ в регенеративном патроне шахтного респиратора / С. Г. Ехилевский, С. А. Ольшаников, Е. П. Потапенко // Известия вузов. Горный журнал. – 2013. – № 3. – С. 46 – 53.

Yekhilevskiy S. G., Olshanikov S. A., Potapenko Ye. P. *Vliyaniye peremennykh krayevykh usloviy na kvazistatsionarnyy profil kontsentratsii* CO_2 v regenerativnom patrone shakhtnogo respiratora [Effect of variable boundary conditions on the CO_2 concentration quasi-stationary profile in regenerative cartridge of mine respirator]. *Izvestiya vuzov. Gornyy zhurnal*, 2013, no. 3, pp. 46-53. (In Russian)

5. Балабанов, П. В. Идентификация параметов математических моделей регенерации воздуха средствами защиты изолирующего типа / П. В. Балабанов, А. А. Кримштейн, С.В. Пономарев // Вестник Воронежского государственного технического университета. – 2010. – Т. 6, № 7. – С. 68 – 73.

Balabanov P. V., Krimshteyn A. A., Ponomarev S. V. *Identifikatsiya* parametrov matematicheskikh modeley regeneratsii vozdukha sredstvami zashchity izoliruyushchego tipa [Identification of mathematical models parameters of air regeneration by self-contained protective means]. *Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta*, 2010, no. 6(7), pp. 68-73. (In Russian)

6. Alhama F., Gonzailer-Fernández C. F. Network simulation method for solving phase-change heat transfer problems with variable thermal properties // Heat and Mass Transfer. -2002. - Vol. 38. - Pp. 327–335.

Рекомендовано к публикации д-ром техн. наук А. Ф. Долженковым Дата поступления рукописи 29.06.2023 Stepan Grigoryevich Yekhilevskiy, Dr. Sci. (Tech.), professor; e-mail: <u>ekhilevskiy@yandex.ru;</u> Oksana Valeryevna Golubeva, Cand. Sci. (Physics and Mathematics), first vice-rector; e-mail: <u>o.golubeva@psu.by;</u>

Olga Nikolayevna Zabelendik, senior lecturer; e-mail: <u>o.zabelendik@psu.by</u> Educational Institution "Euphrosyne Polotskaya State University of Polotsk" 211440, Republic of Belarus, Novopolotsk, 29, ulitsa Blokhina. Phone: (+37 529) 219-68-53

CRITERION OF ENHANCEMENT OF PROTECTIVE POWER TIME OF SELF-CONTAINED BREATHING APPARATUS WITH HETEROGENEOUSLY LOADED REGENERATIVE CARTRIDGE

Purpose. Enhancement of efficacy of the chemical oxygen breathing apparatus protection resource utilization for optimization of its protective power time.

Methods. Mathematical modeling and computer-generated simulation of sorption dynamics.

Results. In order to optimize the chemical oxygen breathing apparatus the modeling formalism has been developed for the process of gas-air mix regeneration by a layer of potassium superoxide pellets with a diameter changing in the direction of the exhaled air filtration.

Scientific novelty. It has been demonstrated that the increase in the protective power time defined by the critical breakthrough period in the air-feed closed-circuit section will be equal to the fixed carbon increase in the open circuit.

Practical value. The protective power time of the breathing apparatus with 1350 g of oxygen-containing product operating in the heavy physical work mode by the circular circuit will increase by 25.9 % due to the changes (jumps) in the pellets diameter.

Keywords: breathing apparatus; sorption dynamics; operating layer of chemical absorbent; pellet size; protective power time.