Микротвердость пластин кремния, прошедшего геттерирующую обработку

С.А.Вабищевич, Н.В.Вабищевич, Д.И.Бринкевич

Исследовано влияние высокотемпературной геттерирующей обработки на микротвердость монокристаллического кремния, полученного методом Чохральского. Показано, что фоновые технологические примеси (Cu, Na, Au) увеличивают микротвердость кремния. Преципитация кислорода в кремнии при термическом отжиге приводит к уменьшению микротвердости материала. Образование преципитатов кислорода не является доминирующим фактором, влияющим на изменение прочностных свойств Si при термообработке.

Введение

Быстродиффундирующие металлические примеси (Cu, Au, Na, Fe и т.д.), проникающие в монокристаллический кремний в процессе выращивания и технологической обработки, изменяют электрофизические и механические свойства материала, что приводит к деградации характеристик полупроводниковых приборов и микросхем [1] и повышению себестоимости их производства. Для уменьшения содержания указанных выше примесей в кремнии применяются различные методики геттерирования [2, 3]. Изменение механических свойств кремния при геттерирующей термообработке обусловлено тем, что в реальных полупроводниках деформация кристалла связана с перемещением дислокаций. Примесный состав и дефектная структура материала могут оказывать существенное влияние на динамические свойства дислокаций [4], а, значит, и на микротвердость, характеризующую сопротивление решетки упругопластической деформации.

Методика эксперимента

Цель работы — исследование влияния геттерирующей термообработки на микротвердость (Н) бездислокационного кремния, выращенного по методу Чохральского. Изотермический геттерирующий отжиг при 925°С в течение 5 часов проводили в атмосфере водорода, а также аргона и

в вакууме. Атмосфера отжига не оказывала существенного влияния на микротвердость монокристаллов. Для очистки материала от быстродиффундирующих технологических примесей на часть образцов перед отжигом методом магнетронного напыления наносилась пленка металлического геттера — вольфрама. Концентрация кислорода ($N_{\rm O}$) измерялась методом ИК-поглощения с использованием градуировочного коэффициента $3,3\cdot10^{17}$ см⁻². Содержание быстродиффундирующих технологических примесей (Cu, Au, Fe, Na) контролировалось методом нейтронно-активационного анализа. Измерения микротвердости проводились на приборе ПМТ-3. Нагрузка на индентор варьировалась в пределах 50-200 г. Учитывая анизотропию микротвердости кремния, измерения проводили вдоль направления (111) по стандартной методике.

Результаты эксперимента и их обсуждение

Микротвердость исходных монокристаллов кремния от концентрации кислорода практически не зависела и во всех исследовавшихся образцах была близка к 9,8 ГПа (рис.). Термообработка (ТО) при температуре 925°С длительностью 5 ч приводила к возрастанию H (кривые 2,2'). Аналогичный эффект наблюдался ранее авторами [5,6] в процессе отжига при более низких (150-800°С) температурах. Изменения H в рассматриваемом случае (2-4%) были существенно ниже, чем при 800°С, где они составили \sim 8%, но превышали соответствующие пока-

Рис. Зависимость величины микротвердости H от нагрузки (P) для кремния исходного (1, 1') и термообработанного с (3, 3') или без (2, 2') геттерирующий пленки $W.\ N_O\cdot 10^{-17}$, см⁻³: 1-3-9,29; 1'-3'-13.

затели (1,5-2%) для низкотемпературного (150°C) отжига.

Нагрев при 925°С приводил также к удалению кислорода из междоузлий в образцах с $N_{\rm O}>1\cdot10^{18}{\rm cm}^{-3}$ (табл.1). Эффективность преципитации возрастала при увеличении содержания кислорода в междоузельном положении, и для образцов с $N_{\rm O}=1,3\cdot10^{18}{\rm cm}^{-3}$ доля преципитировавшего кислорода достигала $\sim 60\%$. В образцах с пониженным содержанием кислорода $N_{\rm O}=9,3\cdot10^{17}~{\rm cm}^{-3}$ удаления атомов данной примеси из междоузельного положения практически не наблюдалось (табл.1).

Таблица 1

Изменение концентрации кислорода
в процессе ТО (925°C, 5 ч)

No	$N_{\rm O},10^{\text{-}17},\mathrm{cm}^{\text{-}3}$				
образца	Исходный	TO	W+TO		
1	9,29	9,22	9,29		
2	12,0	11,0	9,29 10,42		
3	12,9	7,92	7,11		
4	13.5	5.21	5.10		

Отметим также, что для образцов, где имела место интенсивная преципитация кислорода, рост H в процессе термообработки был выражен слабее, чем в образцах, где не наблюдалось удаления кислорода из междоузельного положения (рис., кривые 2,2'). Таким образом, можно сделать вывод о том, что преципитация кислорода приводит к снижению H кремния. Это согласуется с данными работы [7], в которой показано, что атомы кислорода препятствуют росту и размножению дислокаций при деформации кремния, и, соответственно, TO, снижая концентрацию междоузельного кислорода, должна приводить к уменьшению H.

Как известно [8], напыление на поверхность пластин Si вольфрама и последующий нагрев приводят к очистке монокристалла от быстродиффундирующих технологических междоузельных примесей, причем преципитация кислорода снижает указанный эффект (табл.2, образцы 1 и 4). Характерно, что геттерирующая ТО приводила к снижению (до 12%) H кремния (рис., кривые 3, 3'), причем величина Н коррелировала с концентрацией быстродиффундирующих междоузельных примесей (рис., табл.2). Таким образом, можно утверждать, что фоновые междоузельные примеси (Fe, Cu, Au, Na) повышают микротвердость кремния. В подтверждение указанного вывода можно также сослаться на результаты работы [6], в которой очистка Si от технологических примесей переходных металлов путем введения в расплав редкоземельных элементов, также приводила к упрочению монокристалла. Кроме того, в качестве еще одного довода можно отметить обычно наблюдающееся увеличение Н в нижней части слитков кремния, где концентрация междоузельных технологических примесей существенно выше [9].

Таблица 2 Концентрации технологических примесей в исследовавшихся образцах

№ образца	Металическое покрытие при	Концентрации примесей, см-3		
ооразца	то 925 °C, 5 ч	N _{Cu} ·10 ⁻¹³	N _{Au} ·10 ⁻¹⁴	N _{Na} ·10 ⁻¹⁵
1	_	20	6	9,8
	W	2,5	0,8	3,1
4	_	22	5,5	12,0
	W	7,2	1,9	6,9

Объяснить полученные результаты можно, принимая во внимание следующее. Фоновые технологические примеси Fe, Au, Cu, Ni интенсивно захватываются дислокациями в кремнии, создавая преципитаты [10,11]. Указанные примесные преципитаты способны блокировать скольжение дислокаций, что должно приводить к росту Н кремния. Следовательно, снижение концентрации указанных примесей должно приводить к уменьшению H, что и наблюдалось на эксперименте. С другой стороны, атомы кислорода, взаимодействуя с быстродиффундирующими технологическими примесями, способны захватывать последние, препятствуя их удалению из кристалла. При этом должны подавляться процессы геттерирования, и H не должна значительно уменьшаться.

Экспериментальные результаты, приведенные в настоящей работе, свидетельствуют также о том, что преципитация кислорода не является единственным

фактором, определяющим поведение Н кремния при нагреве. Анализ экспериментальных данных позволяет сделать предположение, что при термическом отжиге кремния наряду с процессом преципитации кислорода, снижающим Н, существует и другой фактор, вызывающий увеличение H кремния. Причем, он оказывает более существенное влияние, чем преципитация кислорода. В подтверждение данного вывода отметим, что в бескислородном зонном кремнии увеличение Н в процессе ТО выражено гораздо сильнее, чем в кремнии, выращенном по методу Чохральского. Так, согласно [6], при высокотемпературном отжиге (800°C) Si, выращенного методом зонной плавки, с концентрацией кислорода менее 10^{16} см⁻³, увеличение Hмонокристаллов достигало 10-14 %.

Таким образом, в кислородсодержащем Si могут существовать два конкурирующих процесса, влияющих на поведение H при TO. Первый связан с удалением атомов кислорода из междоузлий, что приводит к уменьшению H [7]. Второй — вероятнее всего, с образованием в ходе TO дефектно-примесных комплексов, приводящим к росту H. Не исключено, что эти комплексы включают в свой состав, междоузельные атомы фоновых технологических примесей переходных металлов. Экспериментальные данные указывают на то, что преобладающим является второй процесс.

Выводы

Фоновые технологические примеси (Cu, Na, Au) увеличивают H кремния. Преципитация кислорода в кремнии при термическом отжиге приводит к уменьшению H материала. Образование преципитатов кислорода не является доминирующим фактором, влияющим на изменение H Si при TO. Увеличение H кремния в ходе термического отжига определяется образованием дефектно-примесных комплексов предположительно междоузельного типа.

Литература

- 1. Рейви К. Дефекты и примеси в полупроводниковом кремнии. М.: Мир, 1984. 472 с.
- Kang J.C., Schroder D.K. Gettering in silicon. J. Appl. Phys., 1989, v.65, no.8, p.2974-2985.
- 3. Myers S.M., Seibt M., Schroter W. Mechanisms of transition metal gettering in silicon. J. Appl. Phys., 2000, v.88, no.7, p.3795-3819.
- 4. Судзуки Т., Есинага Х., Такеути С. Динамика дислокаций и прочность. М.: Мир, 1989, 296 с.
- Березина Г.М., Коршунов Ф.П., Мурин Л.И. Изменение микротвердости кремния при низкотемпературном отжиге. Неорганические материалы. 1990, т.26, №4, с.683-686.
- Бринкевич Д.И., Вабищевич С.А., Петров В.В. Влияние примесей IIIВ и IV групп периодической системы на микротвердость монокристаллического кремния. Микроэлектроника, 1997, т.26, №4, с.297-300
- Sumino K. Interaction of dislocation with impurities and influence on the mechanical properties of silicon crystals. Defects Semiconductors. Symp., Boston, Mass., Nov. 1982. N.Y., 1983, p.307-321.
- Бринкевич Д.И., Крюков В.Л., Петров В.В., Соколов Е.Б, Фурманов Г.П. Влияние быстродиффундирующих примесей на генерацию термодоноров в кремнии. Письма в ЖТФ, 1991, т.17, №1, с.14-16.
- 9. Вабищевич С.А., Бринкевич Д.И., Вабищевич Н.В. Влияние примесей на микротвердость монокристаллического кремния. Физика процессов деформирования и разрушения и прогнозирования механического поведения материалов. Труды XXXVI межд. семинара "Актуальные проблемы прочности", Витебск, 26-29.09.2000, ч.1, с.145-149.
- Higgs V., Goulding M., Brinklow A., Kightley P. Characterization of epitaxial and oxidation-induced stacking faults in silicon: The influence of transition-metal contamination. Appl. Phys. Lett., 1992, v.60, no.11, p.1369-1371.
- 11. Higgs V., Kittler M. Investigation of the recombination activity of misfit dislocations in Si/SiGe epilayers by cathodoluminescense imaging and the electron beam induced current technique. Appl. Phys. Lett., 1993, v.63, no.15, p.2085-2087.

Бринкевич Дмитрий Иванович — Белорусский государственный университет, кандидат физико-математических наук, ведущий научный сотрудник. Специалист в области исследования монокристаллического кремния.

Вабищевич Сергей Ананьевич — Полоцкий государственный университет, кандидат физико-математических наук, доцент. Специалист в области исследования структурных свойств полупроводников.

Вабищевич Наталья Вячеславовна — Полоцкий государственный университет, старший преподаватель. Специалист в области исследования структурных свойств полупроводников.