ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 621.372.831.6

РЕШЕТОЧНЫЕ ЭЛЕМЕНТЫ СВЯЗИ ВЫСОКОДОБРОТНЫХ РЕЗОНАТОРОВ И ПРЯМОУГОЛЬНЫХ ВОЛНОВОДОВ В МИЛЛИМЕТРОВОМ ДИАПАЗОНЕ

© 2006 г. В. А. Карпович, Г. Я. Слепян, В. Н. Скресанов, В. Н. Родионова, О. В. Филипёнок

Поступила в редакцию 31.03.2005 г.

Разработаны методики электродинамического расчета широкополосных элементов связи с одномодовыми волноводами при помощи плоских щелевых решеток. Спроектированы и экспериментально исследованы новые устройства связи, которые обеспечили коэффициент стоячей волны не более 1.6 во всем диапазоне перестройки резонатора без подрегулировки элемента связи. Установлено, что применение новых устройств связи в резонаторах не ухудшило нагруженную добротность резонатора.

введение

Одним из главных требований, предъявляемых к универсальному измерительному резонатору, является высокая собственная добротность в сочетании с широким диапазоном перестройки частоты. Поэтому весьма важным является вопрос о широкополосном элементе связи указанного резонатора с СВЧ-трактом. В настоящее время ведется активный поиск оптимальных устройств связи с линиями передачи [1-6]. Практическая реализация бездиафрагменных элементов связи в коротковолновой части длин радиоволн вызывает технологические трудности изготовления [7, 8]. Путем совершенствования технологии и конструкции эти трудности можно уменьшить. Однако представляет интерес и поиск новых физических принципов реализации элемента связи открытого резонатора с прямоугольным волноводом в данном диапазоне частот. Один из таких принципов – использование в качестве элемента связи полупрозрачной решетки. Ниже будет показано теоретически и экспериментально, что одним из главных достоинств такого элемента является возможность управления добротностью связи Q_{cs} в широких пределах путем вариации конструктивных параметров. Другое важное качество – повышенная технологичность (решетка может быть нанесена на диэлектрическую подложку и изготовлена средствами микроэлектроники).

1. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ УСТРОЙСТВА СВЯЗИ

Конструкция элемента связи показана на рис. 1. Поле в волноводе записывается аналогично [9] в виде

$$\vec{H} = \frac{\vec{x}_0}{W_0} \frac{h_1}{k} \exp(-jh_1 z) A_1 \sin\frac{\pi}{a} x, \qquad (1)$$

где h_1 – постоянная распространения основной волны, W_0 – волновое сопротивление свободного пространства, k – волновое число волны в среде, a – размер широкой стенки волновода, A_1 – ам-

Рис. 1. Конструкция элемента связи: а – решетка связи в прямоугольном волноводе, б – конфигурация решетки связи.

Рис. 2. Геометрия модельной задачи для возбуждения полубесконечного волновода с диэлектрической пластиной магнитным током: а – схема возбуждения магнитным током, расположенным на торцевой стенке, б – конфигурация частичных областей для решения ключевой задачи.

плитудный коэффициент, определяемый равенством

$$A_1 = -\frac{1}{N_1} \int (\vec{y}_0 \vec{E}) \sin \frac{\pi x}{a} dS_0, \qquad (2)$$

 S_0 – апертура решетки (прямоугольник $c \times a'$), \vec{E} – поле в апертуре решетки, N_1 – норма волны, \vec{x}_0 , \vec{y}_0 – единичные векторы.

Вначале вычислим A₁ в пренебрежении диэлектрической подложкой, а затем выведем поправочный коэффициент, учитывающий ее влияние. Воспользуемся двухсторонними граничными условиями импедансного типа, имеющими в наших обозначениях вид [10]

$$E_{y}^{+} - E_{y}^{-} = \frac{jkl_{0}}{2}W_{0}(H_{x}^{+} - H_{x}^{-}), \qquad (3)$$

 $l_0 = \frac{2d}{\pi} \ln\left(\frac{1}{\cos\theta}\right)$, где $\theta = \pi \alpha/2d$, α – полуширина

ленты, *d* – полупериод решетки, индексами "±" обозначены поля внутри резонатора и волновода соответственно.

Особый интерес для элемента связи представляет частный случай редкой решетки, когда $\theta \ll 1$. Тогда $\cos\theta \cong 1 - \theta^2/2$, и для l_0 получаем приближенное равенство $l_0 \approx \pi \alpha^2/4d$. В этом приближении является оправданным использование упрощенного граничного условия (3) вместо более полной системы граничных условий, также приведенной в [10].

Используя (3), получаем

$$|A_{1}| = \frac{k l_{0} W_{0} c}{N} H_{0x} \int_{0}^{a'/2} \cos \frac{\pi x'}{a} dx' =$$

$$= \frac{k l_{0} W_{0} a c H_{0x}}{\pi N} \sin \left(\frac{\pi a'}{2a}\right),$$
(4)

 H_{0x} – поле рабочего колебания резонатора на поверхности решетки. Для сравнения приведем формулу для $|A_1|$ в случае круглого отверстия [7]:

$$|A_1| = \frac{4}{3}r^3\omega\mu_0 H_{0x}\frac{1}{N},$$
 (5)

где r – радиус отверстия, ω – круговая частота, μ_0 – магнитная проницаемость вакуума.

Сравнивая (5) с (4), приходим к заключению, что решетка эквивалентна круглому отверстию связи с эффективной магнитной поляризуемостью

$$M_{\varphi\varphi} = l_0 c I = \frac{l_0 a c}{\pi} \sin\left(\frac{\pi a'}{2a}\right), \tag{6}$$

I – величина тока.

Возможен также и другой способ вычисления $M_{3\phi}$, основанный на формуле для магнитной поляризуемости одиночной узкой щели с прямоугольной апертурой ($M \approx 4\pi\alpha^2 c/16$). Тогда

$$M_{\rm sp} \cong \frac{\pi}{16} \frac{4\alpha^2 c}{2d} \sum_{p=1}^{P} 2d \sin\left[\frac{\pi}{a}(x_p + 2pd)\right], \qquad (7)$$

где $P - число щелей в решетке, <math>x_p -$ расстояние между стенкой и *p*-й лентой. Суммируя конечный ряд в (7), приходим к равенству $M_{3\phi} \approx \pi \alpha^2 c I/4d$, при условии $\theta \ll 1$ совпадающему с (6). Подобное совпадение формул, полученных из различных исходных предпосылок, является дополнительным свидетельством правильности проведенных выкладок.

Перейдем к учету влияния диэлектрической подложки (рис. 2). Прежде всего отметим, что для поля рассматриваемой поляризации (электрическая компонента параллельна щелям) наличие на поверхности решетки границы раздела сред с различными диэлектрическими проницаемостями є не меняет граничного условня (3) [11, 12]. Наличие подложки приводит к изменению амплитуды волн, возбуждаемых элементом связи за счет эффектов парциального отражения от двух границ подложки. Чтобы учесть этот эффект, фактически нам необходимо рассмотреть ключевую задачу о возбуждении полубесконечного прямоугольного волновода с диэлектрической пластиной магнитным током, расположенным на торцевой стенке (рис. 2a). Анализ можно начать с более общей структуры (рис. 2б) и лишь потом перейти к пределу *l* — 0. Используем метод частичных областей; частичные области показаны на рис. 2б римскими цифрами. Поля *n*-й собственной волны в каждой из частичных областей представим в виде

$$f_{n}^{I}(z) = A_{n}\exp(jh_{n}z) + B_{n}\exp(-jh_{n}z),$$

$$f_{n}^{II}(z) = C_{n}\exp(jh_{n}^{\varepsilon}z) + D_{n}\exp(-jh_{n}^{\varepsilon}z), \qquad (8)$$

$$f_{n}^{III}(z) = E_{n}\exp(jh_{n}z),$$

где B_n , C_n , D_n , E_n – неизвестные коэффициенты, $\tilde{h}_n = \sqrt{k^2 - (n\pi/a)^2}$, $h_n^{\varepsilon} = \sqrt{k^2 \varepsilon - (n\pi/a)^2}$, $A_n = \frac{j\varepsilon_0}{\tilde{h}_n} \int_{\Sigma} \vec{f} \vec{F}_n d\Sigma$ – амплитуда *n*-й волны в волноводе

без пластины, вычисленная по методике [13], \vec{f} – плотность магнитного тока, \vec{F}_n - *n*-я собственная функция магнитного вектора-потенциала) Σ – символ Кронекера. Цель вычислений – выразить E_n через A_n , пользуясь граничными условиями на границах раздела частичных областей. Сразу приведем окончательный результат. В пределе $l \longrightarrow 0$ получаем

$$E_n = A_n \exp[j(h_n^{\varepsilon} - h_n)\Delta] \left[\frac{a_n - b_n}{a_n - b_n \exp(2jh_n^{\varepsilon}\Delta)} \right], \quad (9)$$

где Δ – толщина подложки, $a_n = (1 + h_n^{\varepsilon}/h_n)^2$, $b_n = (1 - h_n^{\varepsilon}/h_n)^2$. Из формулы (9) получаем $|E_n|^2 = \beta_n |A_n|^2$, где $\beta_n = \frac{(a_n - b_n)^2}{a_n^2 + b_n^2 - 2a_n b_n \cos(2h_n^{\varepsilon}\Delta)}$.

Введя обозначение $y_n = (h_n^{\varepsilon}/h_n)^2$, можно переписать β_n в виде

$$\beta_n = \frac{1}{1 + \frac{\left(1 - y_n\right)^2}{4y_n} \sin^2(h_n^{\varepsilon} \Delta)}.$$
 (10)

Равенство (10) фактически решает поставленную задачу. Для нас представляет интерес частный случай (10) при *n* = 1, характеризующий основную

волну. Приведем для него окончательный результат в виде

$$\beta_{1} = \beta \approx \left\{ 1 + \frac{(\varepsilon - 1)^{2} \sin^{2} \left[k \Delta \sqrt{\varepsilon - \left(\frac{\pi}{ka}\right)^{2}} \right]}{4 \left[1 - \left(\frac{\pi}{ka}\right)^{2} \right] \left[\varepsilon - \left(\frac{\pi}{ka}\right)^{2} \right]} \right\}^{-1}.$$
 (11)

Соотношение (11) есть форма решения, наиболее удобная для численных оценок и качественного анализа. В соответствии с (11) учет влияния подложки сводится к замене $M_{эф} \longrightarrow \sqrt{\beta} M_{эф}$. Далее для Q_{cB} можно применить соотношение, полученное для диафрагменных элементов в [7]:

$$Q_{\rm cB} \approx \frac{ab\lambda^2 L^2}{32\pi\beta M_{\rm bp}^2} \sqrt{1 - \left(\frac{\lambda}{2a}\right)^2} \sqrt{\frac{L}{2r_0} \left(1 - \frac{L}{2r_0}\right)}, \quad (12)$$

где *а* и *b* – размеры выходного волновода, λ – длина волны, r_0 – радиус кривизны зеркал, *L* – расстояние между зеркалами, величина $M_{\rm sp}$ определяется равенством (6), а коэффициент β – соотношением (11).

Проанализируем физический смысл соотношения (12). Из него видно, что управлять величиной Q_{cb} в широких пределах можно, варьируя $M_{s\phi}$ путем изменения как размеров решетки a', c, так и коэффициента заполнения $\frac{\alpha}{d}$. Последнее остается единственной возможностью, если по конструктивно-технологическим соображениям решетка занимает все сечение волновода (a' = a, b = c). Поскольку $\beta \le 1$, влияние подложки приводит к деполяризации решетки и как следствие к уменьшению связи при тех же геометрических размерах элемента. Для диэлектриков типа "поликор" ($\epsilon \approx 10$) уменьшение связи может быть существенным, но его можно компенсировать, выбирая толщину подложки в соответствии с условием

$$k\Delta\sqrt{\varepsilon-\left(\frac{\pi}{ka}\right)^2} = \pi.$$

Полная компенсация возможна только на определенной частоте, но частичная компенсация может быть реализована в достаточно широком диапазоне.

Диэлектрические подложки позволяют существенно повысить рабочие частоты диафрагменных элементов связи, описанных в [7]. Ограничения на их рабочие частоты, как известно, связаны с уменьшением размера отверстия при росте ча-

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 51 № 11 2006

Рис. 3. Конструкция резонатора с элементом связи: 1 – зеркала открытого резонатора, 2 – элемент связи, 3 – возбуждающий волновод.

стоты, что вызывает в процессе изготовления технологические трудности. Подложка позволяет реализовать заданное Q_{cB} при большем размере отверстия и изготовить диафрагменный элемент средствами микроэлектроники. При этом в качестве материала подложки целесообразно использовать вещества со значительными ε (напри-

Результаты экспериментальных исследований открытого резонатора с новым элементом связи

<i>f</i> , ГГц	L _{пр} , дел.	КСВ	$Q_{\scriptscriptstyle \mathrm{H}}$
78.33	0.01	1.25	38600
79.01	1.38	1.6	40010
80.0	2.96	1.21	39100
81.0	4.82	1.3	39850
82.0	6.43	1.34	39980
84.0	9.7	1.41	40600
84.0	0.78	1.48	41100
85.0	2.42	1.38	40700
86.0	4.07	1.23	39820
88.0	7.34	1.18	39200
90.0	10.38	1.22	39750
90.0	0.68	1.37	42040
92.0	4.0	1.14	39600
94.0	7.16	1.26	40080
96.0	10.81	1.39	41120
96.0	0.42	1.48	43000
98.0	3.93	1.33	42600
101.0	9.75	1.46	43530
101.0	1.05	1.52	43980
103.0	3.7	1.54	43800
108.0	9.85	1.34	43440

Рис. 4. Экспериментальные данные добротности открытого резонатора с различными устройствами связи: сплошная линия – резонатор с плоской щелевой решеткой; пунктирная линия – резонатор с диафрагменным устройством связи

мер, поликор), а оптимальную толщину необходимо выбирать в соответствии с условием

$$k\Delta_{\text{ontr}}\sqrt{\varepsilon - \left(\frac{\pi}{ka}\right)^2} = \frac{\pi}{2}$$

где величина k соответствует средней частоте рабочего диапазона.

2. МЕТОДИКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

Параметром, характеризующим оптимальное согласование резонатора с СВЧ-трактом, является величина коэффициента стоячей волны (КСВ). Измерение КСВ проводили по стандартной методике [14] для устройства связи на основе дифракционной решетки, которая была установлена в открытый резонатор, в диапазоне частот 78...118 ГГц (рис. 3). Кроме измерения КСВ, экспериментально исследовали также и один из важнейших параметров – добротность резонатора *Q*. Результаты экспериментальных исследований приведены в таблице.

На рис. 4 приведены сравнительные экспериментальные данные нагруженной добротности $Q_{\rm R}$ резонатора с элементом связи на основе плоской решетки и нагруженной добротности резонатора с диафрагменным элементом связи в диапазоне 78...118 ГГц. Анализируя результаты, можно констатировать, что применение решетки практически не ухудшило нагруженную добротность резонатора.

ЗАКЛЮЧЕНИЕ

•В данной работе проведено теоретическое и экспериментальное исследование новых принципов широкополосного согласования высокодобротных широкодиапазонных резонаторов с одномодовыми волноводами при помощи плоских щелевых решеток.

В результате спроектированы новые устройства связи, которые обеспечили КСВ < 1.6 во всем диапазоне перестройки резонатора. Данные устройства связи альтернативны бездиафрагменным устройствам связи, так как в миллиметровом диапазоне частот сужающиеся волноводы обычно изготавливают методом гальванического наращивания, что требует изготовления сверхточных оправок и является дорогостоящим технологическим процессом. Новые решетчатые устройства связи выполнены средствами микроэлектроники в виде интегральной схемы, что обусловило их высокую надежность. Существенно, что они не требуют подгонки величины связи как в процессе производства, так и в процессе эксплуатации резонатора (при его частотной перестройке).

Особо следует отметить, что применение новых устройств связи в резонаторах практически не ухудшило нагруженную добротность резонатора.

Работа выполнена при финансовой поддержке государственной программы Республики Беларусь "Электроника" (проект № 33) и гранта БРФФИ-ГФФИУ (№ Ф05К-003).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Faby G., Schiinemann K.* // IEEE Trans. 1997. V. MTT-45. № 11. P. 2043.
- Matsui T., Akari K., Kijokawa M. // IEEE Trans. 2000.
 V. MTT-48. № 7. P. 1043.
- Булгаков Б.М., Гламаздин В.В., Натаров М.П., Скресанов В.Н. // РЭ. 1998. Т. З. № 1. С. 46.
- Леонов Ю.И., Фурсов А.М. // Респ. межвед. темат. науч.-техн. сб. Радиотехника. Харьков: Вища шк., 1981. Вып. 56. С. 22.
- Балаклицкий И.М., Ревин И.Д., Скрынник А.М. и др. // Изв. вузов. Радиофизика. 1983. Т. 26. № 2. С. 235.
- Kuraev A.A., Natarov M.P., Rodionova V.N. et al. // Int. J. Electronics. 1991. V. 70. № 5. P. 1005.
- 7. Родионова В.Н., Слепян Г.Я. // РЭ. 1989. Т. 34. № 7. С. 1357.
- 8. Rodionova V.N., Slepyan A.Ya., Slepyan G.Ya. // Electron. Lett. 1991. V. 27. № 16. P. 1427.
- 9. Кисунько Г.В. Электродинамика полых систем. М.-Л.: ВКАС, 1949.
- 10. Вайнштейн Л.А. Теория дифракции и факторизации. М.: Сов. радио, 1966.
- 11. Родионова В.Н., Слепян Г.Я. // Р.Э. 1986. Т. 31. № 10. С. 1915.
- Конторович М.И., Астрахан М.И., Акимов В.П., Ферсман Г.А. Электродинамика сетчатых структур. М.: Радио и связь, 1987.
- 13. Нефедов Е.И., Сивов А.Н. Электродинамика периодических структур. М.: Наука, 1977.
- Альтман Д. Устройства сверхвысоких частот. М.: Мир, 1969.

1307

69