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We study probabilistic synchronous dynamics of Little-Hopfield neural networks with asymmetric 

interneuronal synaptic connections adjusted in accordance with a learning rule given in [3]. Types of behaviour 

of such systems are analysed in dependence of a vector-parameter characterizing degrees of freedom in 

determining synaptic couplings. We have found that in the case of small level of noise networks can store 

memorized patterns but as an amount of noise is increased behaviour becomes more complex and, beginning 

with some critical value the motion seems to be chaotic.  

 

In recent years a significant progress have been achieved in study of information processing performed by 

neural networks. A considerable role in this advance belongs to the Hopfield paper [1]. However this model is 

based on a number of simplifications produced features which are biologically not plausible. So, various sources 

of synaptic and threshold noise arise in real nervous systems which lead rather to a stochastic neurodynamics 

instead of the deterministic one; interneuronal couplings (synaptic efficacies) are asymmetric, if not 

unidirectional; connectivity of neurons is high but not complete; all synapses ,which connect a given  neuron to 

others, are presumably either excitatory or inhibitory; etc.  

Attempts are undertaken to approach to a more adequate description of neurosystems and many 

interesting results have been obtained along this line (see, for a review [2]). So, neural networks with asymmetric 

synaptic connections display a diversity of types of dynamical behaviour including relaxation towards fixed 

points and limit cycles, chaotic motions, temporal association of patterns and so on. More effective learning 

algorithms are designed which should adjust the synaptic efficacies so as to ensure abilities of the networks 

required for information processing.  

In this paper we study probabilistic synchronous dynamics of binary neural networks with asymmetric 

synaptic couplings adjusted in accordance with a learning rule given in [3]. We have obtained that in the case of 

small level of the threshold noise accounted by an effective temperature the networks indeed do store memorized 

patterns. As an amount of the noise is increased, behaviour of the systems become more complex and, begining 

with some critical value, the motion seems to be chaotic.  

Consider a network composed of N  neurons whose states are described by binary variables so that 

1is = +  means that neuron i  is firing and 1is = −  corresponds to the case when neuron i  is quiescent. Suppose 

that the probability for neuron i be in state i  at time moment 1t +  is given by the equation [4] 
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is expressed through the synaptic efficacies 
ijJ  and the thresholds iT  (hereafter taken to be zero for simplicity). 

The effective temperature 1   takes into account the threshold noise. 

The synaptic matrix 
ijJ  should be adjusted while learning in such a way that a prescribed set of 

memorized patterns  i

 , 1,i N= , 1, p =  be fixed points of the network dynamics if the noise is small enough 

( )1 0→ . We adopte the following prescription [3] 

 

ij ij i jJ C=  +  ,                                                                           (3) 

where vector ( )1, N =    is constructed so as to be orthogonal to all memorized patterns, i.e. ( ) 0 =  for 

all  , and ( )1, NC C C=  is an arbitrary vector. Choice of vector C  influences strictly on behaviour of the 
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system. If we put C  to be proportional to   than eq. (3) yields the symmetric matrix 
ijJ  which is close to the 

synaptic matrices produced by the so-called pseudo-inverse learning rules [5] because J   =   due to eq. (3) 

(for arbitrary C ). In computer simulations a considerable difference was not observed between both cases. 

Further we are concentrated on the case of asymmetric matrices 
ijJ . To analyse the network behaviour, it is 

useful to consider the quantity i ih s  which, in view of eqs. (2), (3), can be expressed as 
 

1 1 sgni i i i i i ih s kC s k C C s= +  = +                                                         (4) 

 

where k s=  . If we denote  
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B k= =  ,                                                       (5) 

 

then it is obvious that (for 0k  ) b k B  . From eq. (1) we can conclude that if 0i ih s   for some state 

( )1, Ns s s=  then it is more probable for neuron i  to keep its state in next time moment. The greater the value 

of i ih s  the greater this probability. Conversely, if 0i ih s   then the change of state is  is more probable. 

First consider the case when 1iC B   for some i . Then  

 

1iC k   

 

and, in view of eq. (4), we find that 0i ih s   for an arbitrary state s , i.e. neuron i  rather keeps its state is  intact. 

If the condition aforesaid is satisfied for all neurons then every state s  of the network is a fixed point of the 

deterministic dynamics but not only the memorized patterns. This case is not interesting with the standpoint of 

associative memory and further it will be outside our cosideration. 

Now let the condition 1iC b   be held for some neuron i . Then we have that 1iC k   and therefore  

the sign of the quantity i ih s  coincides with the sign of the product ( )sgni iks C . If 0k   then neuron i  tends to 

go into the state * sgni is C=  and for 0k   the most probable transition is into the state *

is− . 

The most interesting types of the behaviour occur when the intermediate conditions 
 

1 1iB C b                                                                           (6) 

 

are satisfied. Results relevant to this case will be given below while here it is expedient to note that eqs. (6) 

restrict the absolute values of the components iC  but tell nothing about their signs. On the other hand, choice of 

the values sgn iC  influences highly on the network behaviour while it gets in the state *

is  or *

is− . 

Indeed, let us assume that the network is in the state *s  and consider possible variants of its further 

behaviour which depend on the value of the quantity 
 

* * sgni ik s C  =             (7) 

 

If *k  is positive then we find from eq. (4) that * * 1i ih s s      while for every memorized pattern 1i ih     =  . 

This means that the state *s  is a fixed point (in the deterministic case) and besides, for the stochastic dynamics, 

the probability of keeping this state is greater than the probabilities of keeping the states  . Simulations support 

that this makes worse retrieval of memorized patterns. On the other hand, if the quantaty *k  has such a value that 
* * 0i ih s s      than the cycle with period-2 appears between the states *s  and *.s−  A greater interest is attracted to 

the intermediate region when 
 

*1 min 1 maxi i
i i

C k C−   − .                                                             (8) 

Here the most probable event is such that the network turns from the state *s  into a state which is different both 

from *s  and *s− . 
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We conducted computer simulations for the case when vector C  satisfies the conditions (6) and (8). 

The typical number of neurons was taken to be 12N = , the number of memorized (random) patterns was 4p =  

(we were mainly concetrated on networks of small sizes since if such a system possess some complex behaviour 

then more large networks can obviously share the types of motion observed). 

One of the most important question in exploring network behaviour is about types of motion after 

transient  processes. So, if a network keeps its state after reaching a memorized pattern then this means retrieval 

of this pattern. But if, instead, a network makes a transition from state   to some unstable orbit, then such a 

motion is outside autoassociative memory. To investigate this property, we put the initial state of a network into 

memorized pattern 1  and consider further behaviour. We calculated time evolution of the overlap  
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m t s t
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between the network state and the  pattern. We find also the Fourier spectrum and autocorrelation function 

computed for the overlap ( )1m t  in the case of 1 =  and 3 = . We observed that in the case of small   (large 

noise) time evolution of the overlap is irregular (broad power spectrum and fast decreasing the autocorrelation 

function). As   is increased, the network tends to spend more time in fixed points, exhibiting sometimes 

oscillatory bursts. For sufficiently large   ( )5   the network reaches a memorized pattern and stays in this 

state for very long time (of order thousands iterations). This case corresponds to retrieval of the stored 

information. (We analyzed also overlap histograms obtained from simulations of networks with the same initial 

conditions and synaptic matrices).   
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