# ФИЗИКА

### УДК 546.28:621.315.592

## УПРОЧНЕНИЕ КРЕМНИЯ ВБЛИЗИ ГРАНИЦЫ РАЗДЕЛА SiO<sub>2</sub>/Si

канд. физ.-мат. наук Д.И. БРИНКЕВИЧ, д-р физ.-мат. наук В.В. ПЕТРОВ, канд. физ.-мат. наук В.С. ПРОСОЛОВИЧ (Белорусский государственный университет, Минск); Н.В. ВАБИЩЕВИЧ, канд. физ.-мат. наук, доц. С.А. ВАБИЩЕВИЧ (Полоцкий государственный университет); канд. физ.-мат. наук А.Н. ПЕТЛИЦКИЙ (НПО «Интеграл», Минск)

Методом микроиндентирования исследовано влияние окисла на прочностные характеристики приповерхностных слоев монокристаллического кремния. Экспериментально показано, что у границы раздела  $SiO_2/Si$  существует упрочненный слой толщиной 0,2-0,4 мкм с микротвердостью 20-35 ГПа, которая в два-три раза превосходит величину микротвердости, характерную для объема монокристалла. Толщина и величина микротвердости указанного слоя зависят от условий выращивания окисла. Формирование этого слоя обусловлено, вероятнее всего, междоузельными атомами кремния, образующимися у границы раздела  $SiO_2/Si$  при окислении кремния.

Эффект приповерхностного упрочнения монокристаллического кремния известен давно [1; 2], однако механизм этого явления окончательно не установлен.

На поверхности кремния всегда находится слой окисла, который формируется достаточно быстро — за несколько минут пребывания на воздухе. Толщина этого слоя зависит от ориентации монокристалла и для кремния с ориентацией (100) достигает 4-5 нм [3]. Вблизи границы раздела  $SiO_2/Si$  формируются внутренние упругие напряжения, которые могут способствовать упрочнению материала [4]. С другой стороны, установлено [5; 6], что микротвердость наноструктурированных материалов, имеющих разветвленную сеть границ раздела между фазами, очень высока и может достигать 50-70 ГПа.

Целью настоящей работы являлось исследование методом индентирования возможного влияния  $SiO_2$  на прочностные характеристики кремния.

Параметры исследовавшихся образцов приведены в таблице.

| Параметры, исследовавшихся в | паботе | образиов | окисленного кремния |
|------------------------------|--------|----------|---------------------|
| тараметры, песледовавшимся в | Pacore | ооризцов | окисленного кремини |

| Номер образца Толш | Толщина окисла, | Эффективная энергия разрушения,<br>γ, Па·м, при нагрузке (г) |      |      |      |     |  |
|--------------------|-----------------|--------------------------------------------------------------|------|------|------|-----|--|
|                    | МКМ             | 10                                                           | 20   | 50   | 100  | 200 |  |
| 1                  | 0,37            | 61,2                                                         | 35,2 | 24,5 | 14,1 | 6,8 |  |
| 2                  | 0,28            | 27,0                                                         | 19,1 | 16,1 | 9,4  | 7,4 |  |
| 3                  | 0,34            | 42,5                                                         | 32,5 | 21,7 | 9,3  | 6,5 |  |

Окисел на кремнии марки КЭФ 4,5 с ориентацией (100) выращивался в промышленных условиях по стандартной методике «сухой – влажный – сухой» (образцы 1, 2 в таблице) либо в «сухом» кислороде (образец 3, таблица). Толщина окисла варьировалась в пределах 0,2 – 0,5 мкм.

Микроиндентирование проводилось на приборе ПМТ-3 по стандартной методике при комнатной температуре. В качестве индентора использовался алмазный наконечник в форме четырехгранной пирамиды с квадратным основанием и углом при вершине  $\alpha=136\,^\circ$ . Нагрузка (P) на индентор варьировалась в пределах  $5-200\,$  г. При каждом измерении на поверхность образца наносилось не менее  $50\,$  отпечатков и проводилась обработка результатов измерений с использованием методов математической статистики [7]. Это обеспечивало погрешность измерений микротвердости менее  $2,5\,$ % (с доверительной вероятностью 0,95).

Микрохрупкость определялась по стандартной 5-балльной методике [8].

Значения коэффициента вязкости разрушения  $K_{1C}$  и эффективной энергии разрушения  $\gamma$  рассчитывались по средней длине радиальных трещин в углах отпечатков согласно формулам [9]:

$$K_{1C} = 0.016 \left(\frac{E}{H}\right)^{\frac{1}{2}} \frac{P}{I^{\frac{2}{2}}}; \quad \gamma = \frac{K_{1C}^{2}}{2E},$$
 (1)

где E – модуль Юнга (для кремния 1,5·10<sup>11</sup> Па); L – длина трещины.

Погрешность измерений не превышала 8 %.

Микрохрупкость структур  $SiO_2/Si$  была ниже (примерно в два раза) микрохрупкости монокристаллического кремния. Количество разрушенных отпечатков даже при нагрузке 200 г не превышало 2...3 %. Следует отметить, что в Cz – Si при этой нагрузке обычно наблюдается 10-20 % разрушенных отпечатков. То есть исследовавшаяся в работе пленка термического окисла стабилизирует напряжения, возникающие при индентировании.

Отпечатки на нагрузках 100 и 200 г были четкие. На нагрузках 10-50 г можно визуально заметить бочковидность отпечатков, которая наиболее выражена для образца 3 (см. таблицу). Указанное обстоятельство свидетельствует о том, что у границы раздела  $SiO_2/Si$  имеют место напряжения растяжения вследствие разности параметров решетки кремния и окисла.

Коэффициент вязкости разрушения  $K_{1C}$  и эффективная энергия разрушения  $\gamma$ , как и в неокисленном кремнии, снижались при увеличении нагрузки (рис. 1, таблица). Наличие окисла приводило к увеличению трещиностойкости при малых нагрузках (примерно до 2 раз в образцах 1 и 2, рис. 1).

Микротвердость (H) SiO<sub>2</sub>, которая определялась из измерений H при минимальной нагрузке 5 г, зависела от условий получения окисла и варьировалась в пределах 7,3 – 9,1 ГПа, что несколько ниже микротвердости монокристаллического кремния.

Обнаружен немонотонный характер зависимости микротвердости от нагрузки H(P) (рис. 2) с максимумом при нагрузке P = 50 г.



Рис. 1. Зависимость коэффициента вязкости разрушения  $K_{1C}$  от нагрузки для окисленных пластин кремния марки КЭФ 4,5. Номера кривых 1-3 соответствуют номерам образцов в таблице, кривая 4 – исходная неокисленная пластина КЭФ 4,5

Рис. 2. Зависимость микротвердости от нагрузки для окисленных пластин кремния марки КЭФ 4,5. Номера кривых 1 – 3 соответствуют номерам образцов в таблице, кривая 4 (штриховая) – исходная неокисленная пластина КЭФ 4,5

При дальнейшем увеличении нагрузки до 200 г микротвердость всех исследовавшихся образцов снижалась до значений 10,7-10,9, характерных для объемного монокристаллического кремния. Максимум H наблюдался у границы раздела  $SiO_2/Si$  со стороны кремния и соответствовал глубине проникновения индентора в кремний  $\sim 0,3-0,5$  мкм в зависимости от образца (от условий получения окисла). Это свидетельствует о наличии вблизи границы раздела  $SiO_2/Si$  упрочненного слоя толщиной до 0,5 мкм. Эти экспериментальные данные достаточно хорошо согласуются с расчетными данными по толщине приповерхностного упрочненного слоя в кремнии, приведенными в работе [1]. Так, в работе [1] с использованием теоретического моделирования показано, что у поверхности кремния существует тонкий упрочненный слой толщиной около 0,1 мкм, в котором микротвердость может достигать 30 ГПа.

Следует отметить, что при малых нагрузках  $(10-50~\mathrm{r})$  наблюдалось существенное уширение случайного распределения величин микротвердости. Ширина случайного распределения H при уменьшении нагрузки возрастала с 3 % (при 200 г) до 10 % (при 20 г). При минимальной нагрузке 10 г практически во всех исследовавшихся образцах наблюдалось распределение с двумя близкорасположенными максимумами. Это свидетельствует о формировании в процессе окисления в окисле и вблизи границы раздела  $SiO_2/Si$  областей скоплений дефектов с размерами сравнимыми с размерами отпечатка при указанных нагрузках ( $\sim 1~\mathrm{mkm}$ ).

Таким образом, экспериментальные данные указывают на немонотонное изменение величины микротвердости в структуре  $SiO_2/Si$ . Микротвердость у границы раздела  $SiO_2/Si$  существенно выше микротвердости как кремния, так и окисла. Исходя из этого можно предположить, что вблизи границы раздела  $SiO_2/Si$  микротвердость меняется послойно с определенными значениями толщины слоя  $h_i$  и его микротвердости  $H_i^{ca}$ . Для оценки численных значений микротвердости слоев кремния вблизи границы раздела  $SiO_2/Si$  экспериментальные зависимости H(P) были пересчитаны по формуле [1]:

$$H_i^{c_i} = \frac{H_{i+1}h_{i+1} + H_ih_i}{h_{i+1} - h_i},$$
 (2)

где  $H_i$  и  $h_i$  — величины микротвердости и глубины проникновения индентора, измеренные при i нагрузке из дискретного набора нагрузок ( $P = 10 \text{ г}, 20 \text{ г}, \ldots$ ).

Результаты расчета представлены в виде гистограмм на рисунке 3. Для всех исследовавшихся образцов  $H_i^{ca}$  максимально у границы раздела SiO<sub>2</sub>/Si снижается при удалении от нее и выходит на стационарное (одинаковое для всех образцов) значение на расстоянии от границы раздела  $h \sim 0.5$  мкм.



Рис. 3. Гистограммы зависимости слоевой микротвердости кремния от расстояния h от границы раздела  $SiO_2/Si$ 

На основании полученных данных можно сделать вывод, что у границы раздела SiO<sub>2</sub>/Si со стороны кремния находится упрочненный слой толщиной до 0.2-0.4 мкм в зависимости от условий выращивания окисла. В этом слое величина  $H_i^{cq}$  в 2-3.5 раза превышает величину микротвердости в объеме кремния (см. рис. 2).

Таким образом, можно с большой долей уверенности утверждать, что эффект приповерхностного упрочнения монокристаллического кремния обусловлен упрочняющим воздействием границы раздела «естественный окисел – кремний».

Упрочнение кремния вблизи границы раздела  $SiO_2/Si$  может быть обусловлено несколькими различными механизмами. Так, например, указанный эффект может быть вызван наличием у границы раздела  $SiO_2/Si$  области пространственного заряда, обусловленной поверхностными состояниями. Возможное влияние поверхностных состояний на температурную зависимость микротвердости теоретически исследовано в работе [10]. С другой стороны, обнаруженное упрочнение может быть обусловлено междоузельными атомами кремния, образующимися у границы раздела  $SiO_2/Si$  при окислении кремния [11]. Известно [12], что дефекты междоузельного типа упрочняют монокристаллы кремния.

На наш взгляд, наиболее вероятной причиной упрочнения являются поля упругих напряжений у границы раздела  $SiO_2/Si$ , возникающие вследствие несоответствия параметров решеток кремния и окисла. Указанные напряжения могут препятствовать выносу материала из-под индентора.

Таким образом, экспериментально показано, что у границы раздела  $SiO_2/Si$  существует упрочненный слой толщиной 0,2-0,4 мкм с микротвердостью 20-35 ГПа, в три раза превосходящей величину H, характерную для объема монокристалла. Толщина и величина микротвердости указанного слоя зависит от условий выращивания окисла. Его формирование, вероятнее всего, обусловлено полями упругих напряжений, возникающими вследствие несоответствия параметров решеток кремния и окисла.

#### ЛИТЕРАТУРА

- 1. О распределении величины микротвердости по глубине образца / А.Б. Герасимов [и др.] // Физика твердого тела. -1999. Т. 41, № 7. С. 1225 1227.
- 2. Hebbache, M. Nanoindention: depth dependence of silicon hardness studied within contact theory / M. Hebbache // Phys. Rev. B. −2003. − V. 68, № 12. − P. 125310/1 − 6.
- 3. Исследование естественного окисла на поверхности монокристаллического кремния (111) и (100) марки КЭФ (111) и марки КДБ методом спектроскопии отражения / Е.О. Филатова [и др.] // Письма в ЖТФ. 2009. Т. 35, № 2. С. 36 41.
- 4. Gao, Faming. Theoretical model of intrinsic hardness / Faming, Gao // Phys. Rev. B. 2006. V. 73, № 13. P. 132104/1 132104/4.
- 5. Особенности структуры и физико-механических свойств наноструктурных тонких пленок / Д.В. Штанский [и др.] // Физика твердого тела. 2003. Т. 45, № 6. С. 1122 1129.
- 6. Андриевский, Р.А. Размерные эффекты в нанокристаллических материалах. 1. Особенности структуры. Термодинамика. Фазовые равновесия. Кинетические явления / Р.А. Андриевский, А.М. Глезер // Физика металлов и металловедение. 1999. Т. 88, № 1. С. 50 73.
- 7. Калоша, В.К. Математическая обработка результатов эксперимента / В.К. Калоша, С.И. Лобко, Т.С. Чикова. Минск: Высш. шк., 1991. 164 с.
- 8. Концевой, Ю.А. Пластичность и прочность полупроводниковых материалов и структур / Ю.А. Концевой, Ю.М. Литвинов, Э.А. Фаттахов. М.: Радио и связь, 1982. 240 с.
- 9. Колесников, Ю.В. Механика контактного разрушения / Ю.В. Колесников, Е.М. Морозов М.: Наука, 1989. 220 с.
- 10. Danyluk, S. Surface states and the temperature dependence of nanoindention damage in silicon / S. Danyluk, S.-W. Lee // J. Appl. Phys. −1988. − V. 64, № 8. − P. 4075 − 4081.
- 11. Александров, О.В. Модель образования фиксированного заряда в термическом диоксиде кремния / О.В. Александров, А.И. Дусь // Физика твердого тела. 2011. Т. 45, № 4. С. 474 480.
- 12. Vabishchevich, S.A. Microhardness of silicon sheets, subjected to gettering treatment / S.A. Vabishchevich, N.V. Vabishchevich, D.I. Brinkevich // J. Advansed Materials. 2005. V. 12. № 2. P. 125 128.

Поступила 15.09.2011

## SILICON YARDENING AT THE SiO2/Si INTERFACE

## D. BRINKEVICH, V. PETROV, V. PROSOLOVICH, N. VABISHCHEVICH, S. VABISHCHEVICH, A. PETLITSKIY

The oxide influence on strength characteristics monocrystal silicon surface layers was investigated by the microindentation method. It was experimentally shown, that the border of  $SiO_2/Si$  has strengthened layer with microhardness 20-35 GPa which in two – three times surpasses size of microhardness, characteristic for volume of a monocrystal. Thickness of this layer was 0.2-0.4 microns. Thickness and microhardness of the specified layer depend on conditions of oxide cultivation. Formation of this layer is caused, most likely, by interstitial atoms of silicon formed at border of  $SiO_2/Si$  at silicon oxidation.