допрессовки. Существенное влияние на физико-механические свойства режущих элементов оказывает зернистость и концентрация алмазного порошка.

Оптимальной концентрацией алмазов в сверлильном инструменте при обработке бетонных изделий является относительная концентрация 75 %.

Испытания инструмента позволили прийти к выводу, что наиболее рациональной конструкцией алмазных сверл для получения отверстий в твердых неметаллических материалах является сегментное алмазное сверло, оснащенное универсальными режущими элементами, а также определить оптимальные технологические параметры процесса сверления бетона М 500 сверлами Ø100 мм [2, с. 57].

Получены акты внедрения разработанной технологии в учебный процесс кафедр «Технология машиностроения», «Металлорежущие станки и инструменты», «Технология конструкционных материалов» УО «ПГУ», производственную деятельность ООО «Амарант».

Литература

- 1. Верещагин В. А., Журавлев В. В. Композиционные алмазосодержащие материалы и покрытия. Минск: Навука і тэхніка, 1991. 208 с.
- 2. *Дербуш С. В.* Разработка и исследование технологии получения универсальных режущих элементов из алмазосодержащих композиционных материалов. Дисс. магистра технических наук, Новополоцк, 2005. 60 с.

©ПГУ

ИССЛЕДОВАНИЕ ЭЛЕКТРОПРОВОДНОСТИ МАТЕРИАЛОВ НА ОСНОВЕ ДИОКСИДА ТИТАНА

Д. Т. ЖОРОВ, Т. В. МОЛОДЕЧКИНА

The ceramic solids on the basis of titanium dioxide were obtained. It was shown that materials proposed have negative resistance temperature coefficient

Ключевые слова: оксиды, проводимость, керамика, переменная валентность

Оксиды металлов успешно используются в качестве элементов микроэлектронных первичных измерительных преобразователей различных величин (сенсоров), термисторов [1]. В связи с этим актуальным является исследование электрофизических свойств простых оксидов и сложнооксидных систем.

Нами были изготовлены образцы на основе диоксида титана. Приготовление образцов проводили с использованием керамической технологии, зерно исходного порошка не более 0,3 мкм. Количество легирующего элемента (Fe, Mo, Cu, V) составляло от 1 до 20 ат. %. При прессовании получали образцы цилиндрической формы. Режимы отжига T=1100 °C длительность t=120 мин. Далее проводили восстановление образцов в токе водорода при температуре 1000 °C, в течении 20 мин. Вжигание серебряных контактов проводили при температуре T=400 °C, в течение 20 мин. Измерение электрических параметров образцов проводилось двухзондовым методом в диапазоне температур от 20 до 450 °C.

Будучи смешанными друг с другом, оксиды переходных металлов образуют твердые растворы. В таких смешанных оксидах распределение ионов в решетке и порядок их расположения различны, а, следовательно, различна и их проводимость [2]. В общем виде схему изменения валентности ионов можно представить следующим образом:

$$A^{a+} + B^{b+} \xrightarrow{\leftarrow} A^{(a-1)+} + B^{(b+1)+}, \tag{1}$$

где A^{a+} и B^{b+} – ионы металлов (катионы) с валентностями (a+) и (b+) .

Такой переход называют механизмом валентного обмена по Верви [2]. В результате валентного обмена состояние кристалла в целом не изменяется. Процесс требует незначительной энергии активации, так что при достаточно высокой концентрации ионных пар с переменной валентностью проводимость также будет высокой.

При анализе экспериментальных данных установлено, что сопротивление образцов зависит от процентного содержания и вида легирующей добавки, от температуры. Был проведен расчет температурного коэффициента сопротивления (ТКС). Полученные данные приведены в *таблице* 1.

Литература

- 1. *Евдокимов А. В., Муршудли М. Н., Подлепецкий Б. И.* и др.-Микроэлектронные датчики химического состава газов.
- 2. Лазарев В. Б., Красов В. Р., Шаплыгин И. С. Электропроводность окисных систем и пленочных структур. М.: Наука, 1978.— 168с.

Таблица 1. Результаты расчета ТКС

Номер образца и состав	Температурный коэффициент
	сопротивления, 10 ⁻³ / °C
$TiO_2 + 5$ at. % Fe	-6,600
$TiO_2 + 2$ at. % Mo	-3,900
$TiO_2 + 20$ at. % Mo	-3,311
TiO ₂ + 5 ат. % Cu	-1,765
TiO2 + 10 ат. % Cu	-2,727
TiO ₂ + 1 ат. % V	-1,527
$TiO_2 + 5$ at. % V	-2,204
TiO ₂ + 5 at. % V	-9,516
невосстановленный	