UDC 517.9

ON THE OSCILLATION AND ASYMPTOTIC BEHAVIOR FOR A HIGER ORDER NEUTRAL DIFFERENCE EQUATION

DINH CONG HUONG
(Quy Nhon University, Vietnam); NGUYEN VAN MAU
(Hanoi University of Science, Vietnam)

In this paper, the oscillation and asymptotic behavior of the higer order neutral difference equation $\Delta^{k}\left(x_{n}+\delta_{n} x_{n-\tau}\right)+\sum_{i=1}^{r} \alpha_{i}(n) F\left(x_{n-m_{i}}\right)=0, \quad n=0,1, \cdots$ are investigated.

1. Introduction. The properties of solutions of neutral difference equations has been studied extensively in recent years; (see for example the work in [1-10] and the references cited therein). In [3], we obtained some results for the oscillation and the convergence of solutions of neutral difference equation of the form

$$
\begin{equation*}
\Delta\left(x_{n}+\delta x_{n-\tau}\right)+\sum_{i=1}^{r} \alpha_{i}(n) F\left(x_{n-m_{i}}\right)=0, \tag{1}
\end{equation*}
$$

for $n \in \square, n \geq n_{0}$ for some $n_{0} \in \square$, where $r, m_{1}, m_{2}, \cdots, m_{r}$ are fixed positive integers, the functions $\alpha_{i}(n)$ are defined on \square and the function F is defined on \square. In [1], the author obtained some results for the oscillation and the convergence of solutions of higer order neutral difference equation of the form

$$
\begin{equation*}
\Delta^{k}\left(x_{n}+\delta_{n} x_{n-\tau}\right)+q_{n} F\left(x_{n-\sigma}\right)=0 \tag{2}
\end{equation*}
$$

with some restrictions on the function F, the sequences $\left(q_{n}\right),\left(\delta_{n}\right)$.
Motivated by the work above, in this paper, we aim to study the oscillation and convergence of solutions of higer order neutral difference equation

$$
\begin{equation*}
\Delta^{k}\left(x_{n}+\delta_{n} x_{n-\tau}\right)+\sum_{i=1}^{r} \alpha_{i}(n) F\left(x_{n-m_{i}}\right)=0, \tag{3}
\end{equation*}
$$

for $n \in \square$, where $k, \tau, r, m_{1}, m_{2}, \cdots, m_{r}$ are fixed positive integers and the functions $\alpha_{i}(n)$ are defined on \square, $\alpha_{i}(n) \geq 0$, and are not eventually identically zero, the continuous function $F: \square \rightarrow \square$ is such that $x F(x)>0$ for all $x \neq 0$. Moreover, with respect to (3), we assume that there exists a function $G: \square \rightarrow \square$ such that G is continuous and nondecreasing and satisfies the inequality

$$
G(x y) \geq M G(x) G(y) \quad \text { for } x, y>0
$$

where M is a positive constant,

$$
|F(x)| \geq|G(x)|, \quad \frac{G(x)}{x} \geq N>0
$$

and $x G(x)>0$ for $x \neq 0$.
Put $A=\max \left\{\tau, m_{1}, \cdots, m_{r}\right\}$. Then, by a solution of (3) we mean a function which is defined for $n \geq-A$ and sastisfies the equation (3) for $n \in \square$. Clearly, if

$$
x_{n}=a_{n}, \quad n=-A,-A+1, \cdots,-1,0
$$

are given, then (3) has a unique solution, and it can be constructed recursively.
A nontrivial solution $\left(x_{n}\right)_{n \geq n_{0}}$ of (3) is called oscillatory if for any $n_{1} \geq n_{0}$ there exists $n_{2} \geq n_{1}$ such that $x_{n_{2}} x_{n_{2}+1} \leq 0$. The difference equation (3) is called oscillatory if all its solutions are oscillatory. Otherwise, it is called nonoscillatory.
2. The results. To begin with, we get theorem following.

THEOREM 2.1 [2] (Discrete Kneser's Theorem). Let $\left(x_{n}\right)_{n \geq n_{0}}$ be such that $x_{n}>0$ with $\Delta^{k} x_{n}$ of constant sign for all $n \in \square, n \geq n_{0}$ and not identically zero. Then, there exists an integer $m, 0 \leq m \leq k$ with $k+m$ odd for $\Delta^{k} x_{n} \leq 0$ or $k+m$ even for $\Delta^{k} x_{n} \geq 0$ and such that:
$m \leq k-1$ implies $(-1)^{m+i} \Delta^{i} x_{n}>0$ for all $n \in \square, n \geq n_{0}, m \leq i \leq n-1$;
$m \geq 1$ implies $(-1)^{m+i} \Delta^{i} x_{n}>0$ for all $n \in \square, n \geq n_{0}, 1 \leq i \leq m-1$.
Corollaly 2.2 [2]. Let $\left(x_{n}\right)_{n \geq n_{0}}$ be such that $x_{n}>0$ with $\Delta^{k} x_{n} \leq 0$ for all $n \in \square, n \geq n_{0}$ and not identically zero. Then, there exists a large integer $n_{1} \geq n_{0}$ such that for all $n \geq n_{1}$

$$
x_{n} \geq \frac{1}{(k-1)!} \Delta^{k-1} x_{2^{k-m-1} n}\left(n-n_{1}\right)^{(k-1)} .
$$

THEOREM 2.3. Assume that

$$
\begin{equation*}
\frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} \sum_{i=1}^{r} \lim _{n \rightarrow \infty} \inf \alpha_{i}(n)>1, \tag{4}
\end{equation*}
$$

where $\alpha_{i}(n) \geq 0, n \in \square, 1 \leq i \leq r$ and $\tilde{m}=\min _{1 \leq i \leq r} m_{i}$. Then, the inequality

$$
\Delta x_{n}+\sum_{i=1}^{r} \alpha_{i}(n) x_{n-m_{i}} \leq 0, \quad n \in \square
$$

has no eventually positive solution.
Proof. Assume, for the sake of contradiction, that (4) has a solution (x_{n}) with $x_{n}>0$ for all $n \geq n_{1}, n_{1} \in \square$.
Setting $v_{n}=\frac{x_{n}}{x_{n+1}}$ and dividing this inequality by x_{n}, we obtain

$$
\begin{equation*}
\frac{1}{v_{n}} \leq 1-\sum_{i=1}^{r} \alpha_{i}(n) \prod_{\ell=1}^{m_{i}} v_{n-\ell} \tag{5}
\end{equation*}
$$

where $n \geq n_{1}+m, \quad m=\max _{1 \leq i \leq r} m_{i}$.
Clearly, $\left(x_{n}\right)$ is nonincreasing with $n \geq n_{1}+m$, and so $v_{n} \geq 1$ for all $n \geq n_{1}+m$. From (4) and (5) we see that $\left(v_{n}\right)$ is a above bounded sequence. Putting $\lim _{n \rightarrow \infty} \inf v_{n}=\beta$, we get

$$
\lim _{n \rightarrow \infty} \sup \frac{1}{v_{n}}=\frac{1}{\beta} \leq 1-\lim _{n \rightarrow \infty} \inf \sum_{i=1}^{r} \alpha_{i}(n) \prod_{\ell=1}^{m_{i}} v_{n-\ell},
$$

or

$$
\begin{equation*}
\frac{1}{\beta} \leq 1-\sum_{i=1}^{r} \liminf _{n \rightarrow \infty} \alpha_{i}(n) \cdot \beta^{m_{i}} . \tag{6}
\end{equation*}
$$

Since

$$
\beta^{m_{i}} \geq \beta^{\tilde{m}}, \quad \forall i=\overline{1, r},
$$

we have

$$
\lim _{n \rightarrow \infty} \inf \alpha_{i}(n) \beta^{m_{i}} \geq \lim _{n \rightarrow \infty} \inf \alpha_{i}(n) \beta^{\tilde{m}}, \quad \forall i=\overline{1, r}
$$

and

$$
1-\sum_{i=1}^{r} \lim _{n \rightarrow \infty} \inf \alpha_{i}(n) \beta^{m_{i}} \leq 1-\sum_{i=1}^{r} \lim _{n \rightarrow \infty} \inf \alpha_{i}(n) \beta^{\tilde{n}} .
$$

From (6) we have

$$
\lim _{n \rightarrow \infty} \inf \sum_{i=1}^{r} \alpha_{i}(n) \leq \frac{\beta-1}{\beta^{\tilde{m}+1}} .
$$

But

$$
\frac{\beta-1}{\beta^{\tilde{m}+1}} \leq \frac{\tilde{m}^{\tilde{m}}}{(\tilde{m}+1)^{\tilde{m}+1}},
$$

so

$$
\frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} \sum_{i=1}^{r} \lim _{n \rightarrow \infty} \inf \alpha_{i}(n) \leq 1,
$$

which contradicts condition (4). Hence, the inequality

$$
\Delta x_{n}+\sum_{i=1}^{r} \alpha_{i}(n) x_{n-m_{i}} \leq 0, \quad n \in \square
$$

has no eventually positive solution. The proof is complete.
THEOREM 2.4. Let k be even. Assume that $0 \leq \delta_{n}<1, \quad n \geq n_{0}$ and

$$
\begin{equation*}
\frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} M^{2} N G\left(\frac{1}{(k-1)!}\right) \sum_{i=1}^{r} \lim _{n \rightarrow \infty} \inf \alpha_{i}(n) G\left(1-\delta_{n-m_{i}}\left(\frac{n-m_{i}}{2^{n-1}}\right)^{(k-1)}\right)>1 \tag{7}
\end{equation*}
$$

where $\tilde{m}=\min _{1 \leq i \leq r} m_{i}$. Then, the equation (3) is oscillatory.
Proof. Let $\left(x_{n}\right)$ be a nonoscillatory solution of (3) with $x_{n}>0, x_{n-\tau}>0$ and $x_{n-m_{i}}>0$ for all $n \geq n_{0} \geq N_{0}$ and $i=1,2, \cdots, r$. Setting $z_{n}=x_{n}+\delta_{n} x_{n-\tau}$, we get $z_{n} \geq x_{n}>0$ and

$$
\begin{equation*}
\Delta^{k} z_{n}=-\sum_{i=1}^{r} \alpha_{i}(n) F\left(x_{n-m_{i}}\right)<0, \quad n \geq n_{0} \tag{8}
\end{equation*}
$$

It follows from Theorem 2.1 that

$$
\begin{equation*}
\Delta^{k-1} z_{n}>0, \quad k \geq 2, n \geq n_{0} . \tag{9}
\end{equation*}
$$

We will prove that $\Delta z_{n}<0$ eventually. This is obvious from the equation (3) in the case $k=1$. For $k \geq 2$, we suppose on the contrary that $\Delta z_{n}>0$ for $n \geq n_{1} \geq n_{0}$. Then

$$
\begin{equation*}
\left(1-\delta_{n}\right) z_{n} \leq z_{n}-\delta_{n} z_{n-\tau}=x_{n}-\delta_{n} \delta_{n-\tau} x_{n-2 \tau} \leq x_{n} \tag{10}
\end{equation*}
$$

for $n \geq n_{2} \geq n_{1}$. Since (z_{n}) is positive and increasing, it follows from Corollary 2.2 and (10) that

$$
\begin{equation*}
x_{n} \geq\left(1-\delta_{n}\right) z_{n} \geq \frac{1-\delta_{n}}{(k-1)!}\left(\frac{n}{2^{k-1}}\right)^{(k-1)} \Delta^{k-1} z_{n}, \quad n \geq 2^{k-1} n_{2} \tag{11}
\end{equation*}
$$

From (11) for $n \geq n_{3} \geq n_{2}$, we obtain

$$
\begin{aligned}
F\left(x_{n-m_{i}}\right) & \geq G\left(x_{n-m_{i}}\right) \\
& \geq G\left(\frac{1-\delta_{n-m_{i}}}{(k-1)!}\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)} \Delta^{k-1} z_{n-m_{i}}\right) \\
& \geq M^{2} N G\left(\frac{1}{(k-1)!}\right) G\left(\left(1-\delta_{n-m_{i}}\right)\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) \Delta^{k-1} z_{n-m_{i}} .
\end{aligned}
$$

Put $w_{n}=\Delta^{k-1} z_{n}, \quad n \geq n_{0}$. From (8) we have

$$
\begin{equation*}
\Delta w_{n}+\sum_{i=1}^{r} \alpha_{i}(n) M^{2} N G\left(\frac{1}{(k-1)!}\right) G\left(\left(1-\delta_{n-m_{i}}\right)\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) w_{n-m_{i}} \leq 0 \tag{12}
\end{equation*}
$$

We see that $\left(w_{n}\right)$ is an eventually positive solution of (12). But, in view of the condition (7), this is a contradiction to Theorem 2.3. Hence, $\Delta z_{n}<0$ eventually.

Since $\Delta z_{n}<0$ eventually, in Theorem 2.1 we must have $m=j=0$, and

$$
\begin{equation*}
(-1)^{i} \Delta^{i} z_{n}>0, \quad 0 \leq i \leq k-1, \quad n \geq n_{0} . \tag{13}
\end{equation*}
$$

If k is even, (13) implies a contradiction to (9). The proof is complete.
THEOREM 2.5. Let k be odd. Assume that $0 \leq \delta_{n} \leq \sigma<1, \quad n \geq n_{0}$ where σ is a constant and

$$
\begin{equation*}
\frac{(\tilde{m}+1)^{\tilde{m}+1}}{\tilde{m}^{\tilde{m}}} M^{2} N G(P) \sum_{i=1}^{r} \lim _{n \rightarrow \infty} \inf \alpha_{i}(n) G\left(\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right)>1, \tag{14}
\end{equation*}
$$

for every $P \in(0,1), \tilde{m}=\min _{1 \leq i \leq r} m_{i}$. Then, every solution of (3) either oscillates or tends to zero as $n \rightarrow \infty$.
Proof. Assume that $\left(x_{n}\right)$ does not tend to zero as $n \rightarrow \infty$. Using proceeding as in the proof of Theorem 2.4, we have $\Delta z_{n}<0$ eventually. This implies that $z_{n} \rightarrow \ell$ as $n \rightarrow \infty$, where $0<\ell<\infty$. Then, there exists $\varepsilon>0$ and an integer $n_{4}>n_{0}$ such that

$$
0<\varepsilon<\ell \frac{1-\sigma}{1+\sigma}<\ell
$$

and

$$
\begin{equation*}
\ell-\varepsilon<z_{n} \leq z_{n-\tau}<\ell+\varepsilon, \quad n \leq n_{4} . \tag{15}
\end{equation*}
$$

Thus, from (10) and (15), we find for $n \geq n_{4}$ that

$$
x_{n} \geq z_{n}-\delta_{n} z_{n-\tau} \geq z_{n}-\sigma z_{n-\tau}>\ell-\varepsilon-\sigma(\ell+\varepsilon)>\frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} z_{n} .
$$

Let $m=j$ be as in Corollary 2.2. We have

$$
\begin{equation*}
z_{n}=\frac{z_{n}}{z_{2^{j+1-k} n}} z_{2^{j+1-k} n}>\frac{\ell-\varepsilon}{\ell+\varepsilon} z_{2^{j+1-k} n}, \quad n \geq n_{5}>n_{4} . \tag{16}
\end{equation*}
$$

Combining (15) and (16) and using Corollary 2.2, we get for $n \geq n_{6}>n_{5}$ that

$$
\begin{aligned}
x_{n} & >\frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} \cdot \frac{\ell-\varepsilon}{\ell+\varepsilon} z_{2^{j+1-k} n} \\
& \geq \frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} \cdot \frac{\ell-\varepsilon}{\ell+\varepsilon} \frac{\left(2^{j+1-k} n-n_{6}\right)^{(k-1)}}{(k-1)!} \Delta^{k-1} z_{n} \\
& \geq \frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} \cdot \frac{\ell-\varepsilon}{\ell+\varepsilon} \cdot \frac{1}{(k-1)!} 2^{(j+1-k)(k-1)}\left(n-2^{k} n_{6}\right)^{(k-1)} \Delta^{k-1} z_{n} .
\end{aligned}
$$

Thus, for $n \geq 2^{k+1} n_{6}+k-2$ it follows that

$$
\begin{align*}
x_{n} & \geq \frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} \cdot \frac{\ell-\varepsilon}{\ell+\varepsilon} \cdot \frac{1}{(k-1)!} 2^{(j+1-k)(k-1)} \frac{1}{2^{k-1}}(n)^{(k-1)} \Delta^{k-1} z_{n} \\
& \geq \frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} \cdot \frac{\ell-\varepsilon}{\ell+\varepsilon} \cdot \frac{1}{(k-1)!} 2^{(j-k)(k-1)} \Delta^{k-1} z_{n} . \tag{17}
\end{align*}
$$

It can easily be seen that $\frac{\ell-\varepsilon-\sigma(\ell+\varepsilon)}{\ell+\varepsilon} \cdot \frac{\ell-\varepsilon}{\ell+\varepsilon} \cdot \frac{1}{(k-1)!} 2^{(j-k)(k-1)}=P \in(0,1)$.
By (17), for $n \geq n_{7}>n_{6}$, we obtain

$$
\sum_{i=1}^{r} \alpha_{i}(n) F\left(x_{n-m_{i}}\right) \geq \sum_{i=1}^{r} \alpha_{i}(n) M^{2} N G(P) G\left(\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) \Delta^{k-1} z_{n-m_{i}}
$$

Put $w_{n}=\Delta^{k-1} z_{n}, \quad n \geq n_{0}$. We see that $\left(w_{n}\right)$ is an eventually positive solution of

$$
\Delta w_{n}+\sum_{i=1}^{r} \alpha_{i}(n) M^{2} N G(P) G\left(\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) w_{n-m_{i}} \leq 0
$$

In view of the conditon (14), this is a contradiction to Theorem 2.3. The proof is complete.

THEOREM 2.6. Assume that $-1<-\sigma \leq \delta_{n} \leq 0, \quad n \geq n_{0}$ where σ is a constant and the condition (14) in Theorem 2.5 is satisfied. Then, every solution of (3) either oscillates or tends to zero as $n \rightarrow \infty$.

Proof. Let $\left(x_{n}\right)$ be a nonoscillatory solution of (3) with $x_{n}>0, x_{n-\tau}>0$ and $x_{n-m_{i}}>0$ for all $n \geq n_{0} \geq N_{0}$ and $i=1,2, \cdots, r$. Assume, furthermore, that $\left(x_{n}\right)$ does not tend to zero as $n \rightarrow \infty$. Setting $z_{n}=x_{n}+\delta_{n} x_{n-\tau}$, we get $z_{n} \leq x_{n}$ and

$$
\begin{equation*}
\Delta^{k} z_{n}=-\sum_{i=1}^{r} \alpha_{i}(n) F\left(x_{n-m_{i}}\right)<0, \quad n \geq n_{0} . \tag{18}
\end{equation*}
$$

We claim that $\Delta x_{n} \leq 0$ eventually. Suppose on the contrary that $\Delta z_{n}>0$ for $n \geq n_{1}>n_{0}$. Then, for $n \geq n_{2}>n_{1}$, we have

$$
\begin{equation*}
z_{n} \geq x_{n}+\delta_{n} x_{n} \geq(1-\sigma) x_{n}>0 \tag{19}
\end{equation*}
$$

Thus, inequality (9) follows from Theorem 2.1. Since $\left(x_{n}\right)$ is unbounded, it follows from (19) that $\left(z_{n}\right)$ is also unbounded, and hence $\Delta z_{n}>0, \quad n \geq n_{2}$. Applying Corollary 2.2, we find

$$
\begin{equation*}
x_{n} \geq z_{n} \geq \frac{1}{(k-1)!}\left(\frac{n}{2^{k-1}}\right)^{(k-1)} \Delta^{k-1} z_{n}, \quad n \geq 2^{k-1} n_{2} \tag{20}
\end{equation*}
$$

Therefore, in view of (20), for $n \geq n_{3}>n_{2}$ we obtain

$$
\begin{aligned}
F\left(x_{n-m_{i}}\right) & \geq G\left(x_{n-m_{i}}\right) \\
& \geq M^{2} N G\left(\left(\frac{1}{(k-1)!}\right) G\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) \Delta^{k-1} z_{n-m_{i}} .
\end{aligned}
$$

It follows from (9) and the above inequality that $\Delta^{k-1} z_{n}$ is an eventually positive solution of

$$
\Delta w_{n}+\sum_{i=1}^{r} \alpha_{i}(n) M^{2} N G\left(\frac{1}{(k-1)!}\right) G\left(\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) w_{n-m_{i}} \leq 0
$$

In view of the conditon (14), this is a contradiction to Theorem 2.3. Hence, $\Delta x_{n} \leq 0$ eventually. This implies that $x_{n} \rightarrow \ell$ as $n \rightarrow \infty$, where $0<\ell<\infty$.

Since $z_{n}=x_{n}+\delta_{n} x_{n-\tau}$, we get

$$
\lim _{n \rightarrow \infty} \inf z_{n}=\left(1+\lim _{n \rightarrow \infty} \inf \delta_{n}\right) \ell \geq(1-\sigma) \ell .
$$

Hence, $\left(z_{n}\right)$ is eventually positive and (9) holds. Since $z_{n} \leq x_{n}$ and $\left(x_{n}\right)$ is nonincreasing eventually, $\left(z_{n}\right)$ is also nonincreasing eventually. Thus, $z_{n} \rightarrow \ell_{1}$ as $n \rightarrow \infty$, where $0<\ell_{1}<\infty$. Given $\varepsilon \in\left(0, \ell_{1}\right)$, there exists an integer $n_{4}>n_{0}$ such that

$$
\begin{equation*}
\ell_{1}-\varepsilon<z_{n}<\ell_{1}+\varepsilon, \quad n \geq n_{4} . \tag{21}
\end{equation*}
$$

Let $m=j$ be as in Corollary 2.2. For $n \geq n_{5}>n_{4}$, using (21) and Corollary 2.2 successively, we obtain

$$
\begin{aligned}
z_{n} & =\frac{z_{n}}{z_{2^{j+1-k}}} z_{2^{j j 1-k}} n \\
& >\frac{\ell_{1}-\varepsilon}{\ell_{1}+\varepsilon} z_{2^{j+1-k} n} \\
& \geq \frac{\ell_{1}-\varepsilon}{\ell_{1}+\varepsilon} \frac{\left(2^{j+1-k} n-n_{5}\right)^{(k-1)}}{(k-1)!} \Delta^{k-1} z_{n} \\
& \geq \frac{\ell_{1}-\varepsilon}{\ell_{1}+\varepsilon} \frac{1}{(k-1)!} 2^{(j+1-k)(k-1)}\left(n-2^{n} n_{5}\right)^{(k-1)} \Delta^{k-1} z_{n}
\end{aligned}
$$

It follows that for $n \geq 2^{k+1} n_{5}+k-2$,

$$
\begin{align*}
z_{n} & \geq \frac{\ell_{1}-\varepsilon}{\ell_{1}+\varepsilon} \cdot \frac{1}{(k-1)!} 2^{(j+1-k)(k-1)} \frac{1}{2^{k-1}}(n)^{(k-1)} \Delta^{k-1} z_{n} \\
& \geq \frac{2^{(j-k)(k-1)}\left(\ell_{1}-\varepsilon\right)}{\left(\ell_{1}+\varepsilon\right)(k-1)!} \cdot\left(\frac{n}{2^{k-1}}\right)^{(k-1)} \Delta^{k-1} z_{n} . \tag{22}
\end{align*}
$$

It is easily seen that $\frac{2^{(j-k)(k-1)}\left(\ell_{1}-\varepsilon\right)}{\left(\ell_{1}+\varepsilon\right)(k-1)!} \in(0,1)$. By (22), for $n \geq n_{6}>n_{5}$, we get

$$
\begin{aligned}
F\left(x_{n-m_{i}}\right) & \geq G\left(x_{n-m_{i}}\right) \geq G\left(z_{n-m_{i}}\right) \\
& \geq M^{2} N G\left(\left(\frac{2^{(j-k)(k-1)}\left(\ell_{1}-\varepsilon\right)}{\left(\ell_{1}+\varepsilon\right)(k-1)!}\right) G\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) \Delta^{k-1} z_{n-m_{i}} .
\end{aligned}
$$

It follows from (9) and the above inequality that $\Delta^{k-1} z_{n}$ is an eventually positive solution of

$$
\Delta w_{n}+\sum_{i=1}^{r} \alpha_{i}(n) M^{2} N G\left(\frac{2^{(j-k)(k-1)}\left(\ell_{1}-\varepsilon\right)}{\left(\ell_{1}+\varepsilon\right)(k-1)!}\right) G\left(\left(\frac{n-m_{i}}{2^{k-1}}\right)^{(k-1)}\right) w_{n-m_{i}} \leq 0
$$

In view of the conditon (14), this is a contradiction to Theorem 2.3. The proof is complete.
THEOREM 2.7. Let k be even. Assume that $\delta_{n} \equiv 1, n \geq n_{0}$ and $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)=\infty$. Then, the equation (3) is oscillatory.

Proof. Let $\left(x_{n}\right)$ be a nonoscillatory solution of (3) with $x_{n}>0, x_{n-\tau}>0$ and $x_{n-m_{i}}>0$ for all $n \geq n_{0} \geq N_{0}$ and $i=1,2, \cdots, r$. Setting $z_{n}=x_{n}+x_{n-\tau}$, we get $z_{n}>0, n \geq n_{0}$ and the inequalities (8) and (9) are satisfied. Summing (3) from n_{0} to $n-1$ and using (9), we obtain

$$
\Delta^{k-1} z_{n_{0}}=\sum_{\ell=n_{0}}^{n-1} \sum_{i=1}^{r} \alpha_{i}(\ell) F\left(x_{\ell-m_{i}}\right)+\Delta^{k-1} z_{n}>\sum_{\ell=n_{0}}^{n-1} \sum_{i=1}^{r} \alpha_{i}(\ell) N x_{\ell-m_{i}}
$$

which implies

$$
\begin{equation*}
\sum_{\ell=n_{0}}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell) x_{\ell-m_{i}}<\infty . \tag{23}
\end{equation*}
$$

Next, we prove that if $\lim _{n \rightarrow \infty} \inf x_{n}>0$, then $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)<\infty$. Indeed, suppose the contrary that $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)=\infty$. Put $L=\inf _{\ell>n_{0}} x_{\ell-m_{i}}, i=1,2, \cdots, r$. Then, we have

$$
\sum_{\ell=n_{0}}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell) x_{\ell-m_{i}} \geq L \sum_{\ell=n_{0}}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)=\infty,
$$

which contradicts (23).
Since k is even, from Theorem 2.1, we see that $m=j$ is odd and hence $\Delta z_{n}>0, n \geq n_{0}$. Therefore,

$$
0<z_{n}-z_{n-\tau}=x_{n}-x_{n-2 \tau}, \quad n \geq n_{1}>n_{0},
$$

or $x_{n}>x_{n-2 \tau}, \quad n \geq n_{1}$. This implies $\lim _{n \rightarrow \infty} \inf x_{n}>0$. We have seen that this leads to $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)<\infty$, which is a contradiction to $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)=\infty$. The proof is complete.

THEOREM 2.8. Let k be odd. Assume that $\delta_{n} \equiv 1, n \geq n_{0}$ and $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)=\infty$. Then, every solution of (3) either oscillates or tends to zero as $n \rightarrow \infty$.

Proof. Let $\left(x_{n}\right)$ be a nonoscillatory solution of (3) with $x_{n}>0, x_{n-\tau}>0$ and $x_{n-m_{i}}>0$ for all $n \geq n_{0} \geq N_{0}$ and $i=1,2, \cdots, r$. Assume, furthermore, that $\left(x_{n}\right)$ does not tend to zero as $n \rightarrow \infty$. From Theorem 2.1, we see that $m=j$ is even. If $j>2$, then we obtain $\Delta z_{n}>0, \quad n \geq n_{0}$. Proceeding as in the proof of Theorem 2.7, we obtain a contradiction. If $j=0$, then from Theorem 2.1 we have $\Delta z_{n}<0, n \geq n_{0}$. Thus, $z_{n} \rightarrow \ell$ as $n \rightarrow \infty$, where $0<\ell<\infty$. For $\varepsilon \in(0, \ell)$, there exists an integer $n_{1}>n_{0}$ such that

$$
z_{n}=x_{n}+x_{n-\tau}>\ell-\varepsilon>0, \quad n \geq n_{1} .
$$

Hence, $\lim _{n \rightarrow \infty} \inf x_{n}>0$. Proceeding as in the proof of Theorem 2.7, we obtain $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)<\infty$, which is a contradiction to $\sum_{\ell=1}^{\infty} \sum_{i=1}^{r} \alpha_{i}(\ell)=\infty$. The proof is complete.

This work is supported partially by the Vietnam National University Foundation QGTD0809.

REFERENCES

1. R.P. Agarwal, E. Thandapani and P.J.Y. Wong, Oscillation of higher order neutral difference equation, Appl. Math. Letters 10 (1997), 71 - 78.
2. R.P. Agarwal, Difference calculus with applications to difference equations, in General Inequalities 4, cd. W. Walter, ISNM 71, Birkhauser Verlag, Basel, (1984), 95 - 110
3. Dinh Cong Huong, Oscilation and Convergence for a Neutral Difference Equation, VNU Journal of Science, Mathematics-Physics 24 (2008) 133-143.
4. R.K. Brayton and R.A. Willoughby, On the numerical intagration of a symetric system of difference differential equations of neutral type, J. Math. Anal. Appl, Vol. 18 (1967).
5. L.H. Huang and J.S. Ju, Asymptotic behavior of solutions for a class of difference equation, J. Math. Anal. Appl., Vol. 204 (1996).
6. I.G. E. Kordonis and C.G. Philos, Oscillation of neutral difference equation with periodic coefficients, Computers. Math. Applic. Vol. 33 (1997).
7. B.S. Lalli and B.G. Zhang and J.Z. Li, On the oscillation of solutions and existence of positive solutions of neutral delay difference equation, J. Math. Anal. Appl. Vol. 158 (1991).
8. B.S. Lalli and B.G. Zhang, On existence of positive solutions bounded oscillations for neutral delay difference equation, J. Math. Anal. Appl. Vol. 166 (1992).
9. B.S. Lalli and B.G. Zhang, Oscillation and comparison theorems for certain neutral delay difference equation, J. Aus.tral. Math. Soc. Vol. 34 (1992).
10. B.S. Lalli, Oscillation theorems for certain neutral delay difference equation, Computers. Math. Appl. Vol. 28 (1994).
