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In this paper, the oscillation and asymptotic behavior of the higer order neutral difference equation

A (%, +8. %)+ D o (MF(x,,) =0, n=0,1, are investigated.
i=1

1. Introduction. The properties of solutions of neutral difference equations has been studied extensively
in recent years; (see for example the work in [1 — 10] and the references cited therein). In [3], we obtained some
results for the oscillation and the convergence of solutions of neutral difference equation of the form

AG, 3%, )+ Y (VF (6, ) =0, ®

for nel, n>n, for some n, el , where r,m,m,,---, m_ are fixed positive integers, the functions o, (n) are
defined on [J and the function F is defined on [ . In [1], the author obtained some results for the oscillation
and the convergence of solutions of higer order neutral difference equation of the form

A (X, +8,%, )+q,F(x,.)=0 2

with some restrictions on the function F, the sequences (q,),(3,) -

Motivated by the work above, in this paper, we aim to study the oscillation and convergence of solutions
of higer order neutral difference equation

A (%, +8,%, )+ Yo (F(x, ) =0 ©

for neld, where k,t,r,m,m,,---,m_are fixed positive integers and the functions o, (n) are defined on [ ,
o;(n) >0, and are not eventually identically zero, the continuous function F:0 —0 is such that xF(x) >0 for

all x#0. Moreover, with respect to (3), we assume that there exists a function G:J —[ such that G is
continuous and nondecreasing and satisfies the inequality

G(xy) = MG(X)G(y) forx, y>0,

where M is a positive constant,
IF() RGO, @z N >0

and xG(x) >0 for x#0.
Put A=max{t, m,---,m}. Then, by a solution of (3) we mean a function which is defined for n>-A
and sastisfies the equation (3) for neO . Clearly, if

X, =a,, n=-A-A+1,--,-1,0

are given, then (3) has a unique solution, and it can be constructed recursively.
A nontrivial solution (xn)n2n0 of (3) is called oscillatory if for any n, >n, there exists n, >n, such that
Xo, X1 <0 The difference equation (3) is called oscillatory if all its solutions are oscillatory. Otherwise, it is

called nonoscillatory.
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2. The results. To begin with, we get theorem following.

THEOREM 2.1 [2] (Discrete Kneser’s Theorem). Let (xn)nzno be such that x, >0 with A*x, of constant

sign for all nell, n>n, and not identically zero. Then, there exists an integer m, 0<m<k with k+m odd
for A*x <0 or k+m evenfor A“x, >0 and such that:

m<k—1 implies (-1)™"A'x, >0 forall nell, n>n,, m<i<n-1;

m>1 implies (-1)™'A'x, >0 forall nel’, n>n,, 1<i<m-1.

Corollaly 2.2 [2]. Let (X,),., be suchthat x, >0 with A*x, <0 forall nell, n>n, and not identically

zero. Then, there exists a large integer n, > n, such that for all n>n,

X > 1 A,
"Sk-pT A

(n-n)*.
THEOREM 2.3. Assume that
(M+1)™
mm

21@) inf o, (n) >1, (4)

where o;(n)>0,nel,1<i<r and M= mjinm . Then, the inequality

I<i<r

AX,+ Y a; (X, , <0, nell
= '
has no eventually positive solution.

Proof. Assume, for the sake of contradiction, that (4) has a solution (x,) with x, >0 forall n>n, n el .
Setting v, = %

and dividing this inequality by x,, we obtain

n+l

1 L il
=<1-Y o] v, ®)
A i=1 =)

where n>n +m, m=maxm,.

I<is<r

Clearly, (x,) is nonincreasing with n>n, +m, and so v, >1 for all n>n, +m. From (4) and (5) we see
that (v,) is a above bounded sequence. Putting liminfv, =f, we get
nN—x0

Iimsupi = % <1-lim inf > o, (N[ [vo_r
n—wx0 V n—x

n i=1 /=1

or
%sl_z"minfqi(n).smi. (6)
ji=1 N—>wx
Since
pU =", Vi=1r,
we have
lim inf o, (N)B™ = lim inf o, (N)B", Vi=1,r
and

1—_2_111@ inf o, (N)B" sl—;m inf o, (N)B".

From (6) we have

lim inf Zr:ai (n)< p-1

— Berl
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But

SO

= m+l r
DTS fim inf o (n) <1,
i=1 n—w

which contradicts condition (4). Hence, the inequality
A, + D 04 ()X, , <0, nell

has no eventually positive solution. The proof is complete.

THEOREM 2.4. Let k be even. Assume that 0<§, <1, n>n, and

m+1™ 1 n—m ‘“’}
T|v| NG[(k_ jZ!mlnfoc(n)G(l S, (Zn_lj >1, (7

where m = r]I(]Lr) m; . Then, the equation (3) is oscillatory.
Proof. Let (x,) be a nonoscillatory solution of (3) with x, >0,x, . >0 and x,, >0 forall n>n, >N,

and i=1,2,---,r. Setting z, = x +9J,X, ., weget z, >x, >0 and
Az, ==Y 0 (MF(x,,) <0, nzn, (8)
It follows from Theorem 2.1 that
A"z, >0, k>2,n>n, 9)

We will prove that Az, <O eventually. This is obvious from the equation (3) in the case k=1.
For k =2, we suppose on the contrary that Az, >0 for n>n, >n,. Then

(1_8n)zn < Z, _Snzn—r 8n8n Ko S Xn (10)

for n>n, >n,. Since (z,) is positive and increasing, it follows from Corollary 2.2 and (10) that

1-8
X, =>(1-8,)z, > k- 1)|(

(k-1)
2Hj Az, n=2""n, (11)

From (11) for n>n, >n,, we obtain

F ()

\2

G(¥,n,)

e,
M2NG ( T ! 1)JG ((1—8nmi )(%)M jA“znmi .

Put w, =A*'z,, n=>n,.From (8) we have

(k-1)
AW, +20c (MM NG( ! j ((1—6n_mi)(%) jwn_mi <0. (12)

v

\%

(k-1)!

We see that (w,) is an eventually positive solution of (12). But, in view of the condition (7), this is a

contradiction to Theorem 2.3. Hence, Az, <0 eventually.
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Since Az, <0 eventually, in Theorem 2.1 we must have m= j=0, and

(-1)'A'z, >0, 0<i<k-1, n>n, (13)
If k is even, (13) implies a contradiction to (9). The proof is complete.
THEOREM 2.5. Let k be odd. Assume that 0<38, <o <1, nxn, where o isa constant and

(m +1)

(k-1)
M NG(P)ZIlm inf o, (n)G(( ”Z‘k_rlni ) j>1, (14)

for every P e(0,1), m=minm;. Then, every solution of (3) either oscillates or tends to zero as n — .
I<is<r

Proof. Assume that (x,) does not tend to zeroas n — o . Using proceeding as in the proof of Theorem 2.4,
we have Az, <0 eventually. This implies that z, — ¢ as n— o, where 0< /¢ <oo. Then, there exists £ >0 and
an integer n, >n, such that

0<e</i=%<y
l+o
and

l-e<z, <z, <[l+g n<n,. (15)
Thus, from (10) and (15), we find for n>n, that

€—8—G(€+s)z

X,>12,-90,2,.>2,—0z, >(—-e—c(l{+g)> e

Let m=j beasin Corollary 2.2. We have

z {—¢
. =—1"1 7

22j+1—k n

Combining (15) and (16) and using Corollary 2.2, we get for n>n, >n, that

z

L0tk > m itk nzng >n,. (16)

(-e—o(l+e) (—¢

X .
" (+g (+g 2N
S (—e—oc(l+g) = (" *n- ns)(kfl) ALy
- (+e {+e (k=1)! "

(-e-o(l+e) (- 1
(+¢€ (+e (k-1)!

(J+1-k)(k-1) K \(k-D) Ak-1
2 (n-2"n)* " A"z,

Thus, for n>2"n, +k -2 it follows that

£—8—0(£+8).€—8. 1 2(i+1-K)(k-1) 1

X > n (k—l)Ak—l
" l+g (+e (k-1)! 2 2 )
f—S—O‘((+8)./,—8. 1 UKD Ak,
l+g l+g (k-1)! "

l-e-o(l+e) -& 1
l+g L+ (k-1)!
By (17), for n=n, >n,, we obtain

It can easily be seen that 207D = pc(0,1).

kD)
Za (MF (X, ) Za (MM NG(P)G([” i ) jAz
Put w, =A*'z,, n>n,. We see that (w,) isan eventually positive solution of
n—m 7
Aw, +Zoc (n)M NG(P)G((Z—) jwn_mi <0.

In view of the conditon (14), this is a contradiction to Theorem 2.3. The proof is complete.
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THEOREM 2.6. Assume that -1<-c <35, <0, n>n, where ¢ is a constant and the condition (14) in
Theorem 2.5 is satisfied. Then, every solution of (3) either oscillates or tends to zero as n — .
Proof. Let (x,) be a nonoscillatory solution of (3) with x, >0,x,. >0 and x,, >0 forall n=n, >N,

and i=1,2,---,r. Assume, furthermore, that (x,) does not tend to zero as n— . Setting z, =x, +3 X, ., We
get z, <x, and

Az, ==Y 0 (MF(x,,) <0, nxn, (18)
i=1
We claim that Ax, <0 eventually. Suppose on the contrary that Az, >0 for n>n, >n,. Then, for
nxn, >n,, we have
Z,2X%,+98,X, 2(1-0o)x, >0. (19)

Thus, inequality (9) follows from Theorem 2.1. Since (x,) is unbounded, it follows from (19) that (z,)
is also unbounded, and hence Az, >0, n=x=n,. Applying Corollary 2.2, we find

1 n "
X, >2, > 0 1)'(?) Az, n=2"n, (20)

Therefore, in view of (20), for n>n, >n, we obtain

F(Xn—mi) 2 G(Xn—mi)

M2NG (( T f 1)!jG( ”z"kTi )M JA“znmi .

It follows from (9) and the above inequality that A**z

is an eventually positive solution of

n

! 2 1 n—m \*"
Awn+iZ:l:oci(n)M NG((k_l)!)G[( o ) j""n—mi <0.

In view of the conditon (14), this is a contradiction to Theorem 2.3. Hence, Ax, <0 eventually. This
implies that x, — ¢ as n — o, where 0</ <.
Since z, =X, +6,x, ., we get

n“n-t?

liminf z, = (1+lim inf 8, )¢ > (1 6)~.

n—x0

Hence, (z,) is eventually positive and (9) holds. Since z, <x, and (x,) is nonincreasing eventually,
(z,) is also nonincreasing eventually. Thus, z, —¢, as n— o, where 0</, <. Given €€(0,4,), there
exists an integer n, >n, such that

l,—e<z,</l +g nxn,. (21)

Let m=j beas in Corollary 2.2. For n>n, >n,, using (21) and Corollary 2.2 successively, we obtain

-— Zn
Ly = Ly
sz+1—kn
> Loey
(,+g 2N
_ -k o6 (kD)
S (-2 n-ny) Ak’lzn
,+e (k-1
61—8 1 (j+1-k)(k-1) n (k-1) A k-1
> —2 (n-2"n )" A"z,

0, +¢ (k—1)!
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It follows that for n>2""n, +k -2,

" T U te (k-1 o+

2(j*k)(k*1)(€l —8) n (k-1) “
£ Y| ANz
(¢, +e)(k —-1)! (2“1) "

(,—¢ 1 cioken L ) x ke
1 2(j+1-K)(k-1) (n)(k 1) Ak 1Zn

(22)

20D (g _ gy
——1 ~¢(0,1). By (22), for n>n, >n,, we get
(0, +e)(k-1)!

F(m,)

It is easily seen that

v

G(Xn—mi ) 2 G(Zn—mi )
" ZNGH 20060y _g) ]G( n-m )‘“’ ] Ay
(¢, +€)(k —1)! 2 '

It follows from (9) and the above inequality that A“z, is an eventually positive solution of

r , 206Dy _g) ( n—m, <k1)j
Aw, + Y a; (MM NG( ok, jG ( o j W, , <0.

i=1

\%

In view of the conditon (14), this is a contradiction to Theorem 2.3. The proof is complete.

THEOREM 2.7. Let k be even. Assume that 8, =1, n>n, and ZZociM) =o0. Then, the equation (3) is

(=1i=1
oscillatory.
Proof. Let (x,) be a nonoscillatory solution of (3) with x, >0,x,. >0 and x,_, >0 forall n>n, >N,
and i=1,2,---,r. Setting z, =x,+x,., we get z,>0, n>n, and the inequalities (8) and (9) are satisfied.
Summing (3) from n, to n—1 and using (9), we obtain

n-1., n-1,
Ak7lzn0 = Z zai (e)F(XC’—mi ) +Akilzn > Z Za‘l(e) Nxé—mi’
(=ng i=1 r=ny i=1
which implies
O
> ¥ a (0, <. (23)
(=ng i=1 '

Next, we prove that if liminfx >0, then ZZQi(€)<oo. Indeed, suppose the contrary that

=1i=1

S o,(f) =0 Put L=j

nf x,,fm,i =1,2,---,r . Then, we have
r=1 i=1 £>ng

Y S 0x , 2LY Yo ()=,

=ng i=1 r=ng i=1
which contradicts (23).
Since k is even, from Theorem 2.1, we see that m=j is odd and hence Az, >0, n=>n,. Therefore,

0<z,-7, =X, —X, o, N=n>n,,

n

or X,>X,,., n=n. Thisimplies Ml inf x, >0 . We have seen that this leads to zz(xi(é) <o, which isa
- (=1i=1

contradiction to ZZoci (¢) = 0. The proof is complete.

=1i=1
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THEOREM 2.8. Let k be odd. Assume that 5, =1, n>n, and ZZoci (¢) = 0. Then, every solution of (3)
/=1 i=1
either oscillates or tends to zeroas n— .

Proof. Let (x,) be a nonoscillatory solution of (3) with x, >0, x,.>0 and x,, >0 forall n>n, >N,

and i=1,2,---,r. Assume, furthermore, that (x,) does not tend to zero as n— o . From Theorem 2.1, we see
that m=j iseven. If j>2, then we obtain Az, >0, n=xn,. Proceeding as in the proof of Theorem 2.7, we
obtain a contradiction. If j =0, then from Theorem 2.1 we have Az, <0, nxn,. Thus, z, — ¢ as n— o, where
0</¢<w. For e€(0,¢), there exists an integer n, >n, such that

Z, =X, +X_,>¢-e>0, nxn,.

Hence, liminf x, >0 . Proceeding as in the proof of Theorem 2.7, we obtain » ', (¢) <, which is a
N (=1 i=1

contradiction to ZZoci (¢) = 0. The proof is complete.

(=1 i=1
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