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In this paper, the oscillation and asymptotic behavior of the higer order neutral difference equation 

=1

( ) ( ) ( ) = 0, = 0,1,
r

k

n n n i n m
i

i

x x n F x n are investigated.  

 
1. Introduction. The properties of solutions of neutral difference equations has been studied extensively 

in recent years; (see for example the work in [1 – 10] and the references cited therein). In [3], we obtained some 

results for the oscillation and the convergence of solutions of neutral difference equation of the form  

=1

( ) ( ) ( ) = 0,
r

n n i n m
i

i

x x n F x                                                       (1) 

for 
0,n n n  for some 

0n , where 
1 2, , , , rr m m m  are fixed positive integers, the functions ( )i n  are 

defined on  and the function F  is defined on . In [1], the author obtained some results for the oscillation 

and the convergence of solutions of higer order neutral difference equation of the form  

( ) ( ) = 0k

n n n n nx x q F x                                                           (2) 

with some restrictions on the function ,F  the sequences ( ),( )n nq . 

Motivated by the work above, in this paper, we aim to study the oscillation and convergence of solutions 

of higer order neutral difference equation  

=1

( ) ( ) ( ) = 0,
r

k

n n n i n m
i

i

x x n F x                                                     (3) 

for ,n  where 
1 2, , , , , , rk r m m m  are fixed positive integers and the functions ( )i n  are defined on , 

( ) 0i n , and are not eventually identically zero, the continuous function :F  is such that ( ) > 0xF x  for 

all = 0x . Moreover, with respect to (3), we assume that there exists a function :G  such that G  is 

continuous and nondecreasing and satisfies the inequality  

 ( ) ( ) ( ) for , > 0,G xy MG x G y x y    

where M  is a positive constant,  

( )
| ( ) | | ( ) |, > 0

G x
F x G x N

x
 

and ( ) > 0xG x  for = 0x . 

Put 1= max{ , , , }rA m m . Then, by a solution of (3) we mean a function which is defined for n A  

and sastisfies the equation (3) for n . Clearly, if  

= , = , 1, , 1,0n nx a n A A  

are given, then (3) has a unique solution, and it can be constructed recursively. 

A nontrivial solution 
0

( )n n nx of (3) is called oscillatory if for any 1 0n n  there exists 2 1n n  such that 

1
2 2

0n nx x . The difference equation (3) is called oscillatory if all its solutions are oscillatory. Otherwise, it is 

called nonoscillatory. 
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2. The results. To begin with, we get theorem following. 
 

THEOREM 2.1 [2] (Discrete Kneser’s Theorem). Let 
0

( )n n nx  be such that > 0nx  with k

nx  of constant 

sign for all 
0,n n n  and not identically zero. Then, there exists an integer m , 0 m k  with k m odd 

for 0k

nx  or k m  even for 0k

nx  and such that: 

1m k  implies ( 1) > 0m i i

nx  for all 
0,n n n , 1m i n ; 

1m  implies ( 1) > 0m i i

nx  for all 
0,n n n , 1 1i m .   

Corollaly 2.2 [2]. Let 
0

( )n n nx  be such that > 0nx  with 0k

nx  for all 
0,n n n  and not identically 

zero. Then, there exists a large integer 
1 0n n  such that for all 

1n n   

1 ( 1)

1 12

1
( ) .

( 1)!

k k

n k mx x n n
nk

 

THEOREM 2.3. Assume that  

1

=1

( 1)
lim ( ) >1,inf

m r

im n
i

m
n

m
                                                            (4) 

where ( ) 0, ,1i n n i r  and 
1

= min i
i r

m m . Then, the inequality  

=1

( ) 0,
r

n i n m
i

i

x n x n  

has no eventually positive solution.  

Proof. Assume, for the sake of contradiction, that (4) has a solution ( )nx  with > 0nx  for all 
1 1,n n n . 

Setting 
1

= n
n

n

x
v

x
 and dividing this inequality by 

nx , we obtain  

               
=1 =1

1
1 ( ) ,

mr i

i n

in

n v
v

                                                               (5) 

where 
1

1

, = max i
i r

n n m m m . 

Clearly, ( )nx  is nonincreasing with 1n n m , and so 1nv  for all 1n n m . From (4) and (5) we see 

that ( )nv  is a above bounded sequence. Putting lim =inf n
n

v , we get  

=1 =1

1 1
limsup = 1 lim ( ) ,inf

mr i

i n
n n

in

n v
v

 

or  

=1

1
1 lim inf ( ) .

r
m

i
i

ni

n                                                                   (6) 

Since  

, = 1, ,
m mi i r  

we have  

lim ( ) lim ( ) , =1,inf inf
m mi

i i
n n

n n i r  

and  

=1 =1

1 lim ( ) 1 lim ( ) .inf inf
r r

m mi
i i

n n
i i

n n  

From (6) we have  

1
=1

1
lim ( ) .inf

r

i mn
i

n  
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But  

1 1

1
,

( 1)

m

m m

m

m
 

so  

1

=1

( 1)
lim ( ) 1,inf

m r

im n
i

m
n

m
 

which contradicts condition (4). Hence, the inequality  

=1

( ) 0,
r

n i n m
i

i

x n x n  

has no eventually positive solution. The proof is complete. 
 

THEOREM 2.4. Let k  be even. Assume that 
00 <1,n n n  and  

( 1)1
2

1
=1

( 1) 1
lim ( ) 1 >1,inf

( 1)! 2

km r
i

i n mm nin
i

n mm
M NG n G

m k
                        (7) 

where 
1

= min i
i r

m m . Then, the equation (3) is oscillatory.  

Proof. Let ( )nx  be a nonoscillatory solution of (3) with > 0, > 0n nx x  and > 0n m
i

x  for all 
0 0n n N  

and =1,2, ,i r . Setting =n n n nz x x , we get > 0n nz x  and  

0

=1

= ( ) ( ) < 0, .
r

k

n i n m
i

i

z n F x n n                                                       (8) 

It follows from Theorem 2.1 that  

1

0> 0, 2, .k

nz k n n                                                               (9) 

We will prove that < 0nz  eventually. This is obvious from the equation (3) in the case =1k .  

For 2k , we suppose on the contrary that > 0nz  for 
1 0n n n . Then  

2(1 ) =n n n n n n n n n nz z z x x x                                              (10) 

for 2 1n n n . Since ( )nz  is positive and increasing, it follows from Corollary 2.2 and (10) that  

( 1)

1 1

21

1
(1 ) , 2 .

( 1)! 2

k

k kn
n n n nk

n
x z z n n

k
                                      (11) 

From (11) for 3 2n n n , we obtain  

( 1)

1

1

( 1)

2 1

1

( ) ( )

1

( 1)! 2

1
(1 ) .

( 1)! 2

n m n m
i i

k
n m ki i

n mk i

k

ki
n m n mki i

F x G x
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            G z

k
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            M NG G z
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Put 
1

0= ,k

n nw z n n . From (8) we have  

( 1)

2

1
=1

1
( ) (1 ) 0.

( 1)! 2

kr
i

n i n m n mki i
i

n m
w n M NG G w

k
                    (12) 

We see that ( )nw  is an eventually positive solution of (12). But, in view of the condition (7), this is a 

contradiction to Theorem 2.3. Hence, < 0nz  eventually. 
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Since < 0nz  eventually, in Theorem 2.1 we must have = = 0m j , and  

0( 1) > 0, 0 1, .i i

nz i k n n                                                     (13) 

If k  is even, (13) implies a contradiction to (9). The proof is complete. 
 

THEOREM 2.5. Let k  be odd. Assume that 
00 <1,n n n  where  is a constant and  

( 1)1
2

1
=1

( 1)
( ) lim ( ) >1,inf

2

km r
i

im kn
i

n mm
M NG P n G

m
                                  (14) 

for every (0,1)P , 
1

= min i
i r

m m . Then, every solution of (3) either oscillates or tends to zero as n .  

Proof. Assume that ( )nx  does not tend to zero as n . Using proceeding as in the proof of Theorem 2.4, 

we have < 0nz  eventually. This implies that 
nz  as n , where 0< < . Then, there exists > 0  and 

an integer 
4 0>n n  such that  

1
0 < < <

1
 

and  

4< < , .n nz z n n                                                          (15) 

Thus, from (10) and (15), we find for 
4n n  that  

( )
> ( ) > .n n n n n n nx z z z z z  

Let =m j  be as in Corollary 2.2. We have  

1 1 5 4
2 2

1
2

= > , > .n
n j k j k

j k

z
z z z n n n

n nz
n

                                           (16) 

Combining (15) and (16) and using Corollary 2.2, we get for 
6 5>n n n  that  

1
2

1 ( 1)
16

( 1 )( 1) ( 1) 1

6

( )
>

(2 )( )

( 1)!

( ) 1
2 ( 2 ) .

( 1)!

n j k

j k k
k

n

j k k k k k

n

x z
n

n n
   z

k

   n n z
k

 

Thus, for 1

62 2kn n k  it follows that  

( 1 )( 1) ( 1) 1

1

( )( 1) 1

( ) 1 1
2 ( )

( 1)! 2

( ) 1
2 .

( 1)!

j k k k k

n nk

j k k k

n

x n z
k

  z
k

                         (17) 

It can easily be seen that ( )( 1)( ) 1
2 = (0,1)

( 1)!

j k k P
k

. 

By (17), for 7 6>n n n , we obtain  

( 1)

2 1

1
=1 =1

( ) ( ) ( ) ( ) .
2

kr r
ki

i n m i n mki i
i i

n m
n F x n M NG P G z  

Put 
1

0= ,k

n nw z n n . We see that ( )nw  is an eventually positive solution of  

( 1)

2

1
=1

( ) ( ) 0.
2

kr
i

n i n mk i
i

n m
w n M NG P G w  

In view of the conditon (14), this is a contradiction to Theorem 2.3. The proof is complete. 
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THEOREM 2.6. Assume that 
01< 0,n n n  where  is a constant and the condition (14) in 

Theorem 2.5 is satisfied. Then, every solution of (3) either oscillates or tends to zero as n .  

Proof. Let ( )nx  be a nonoscillatory solution of (3) with > 0, > 0n nx x  and > 0n m
i

x  for all 
0 0n n N  

and =1,2, ,i r . Assume, furthermore, that ( )nx  does not tend to zero as n . Setting =n n n nz x x , we 

get 
n nz x  and  

0

=1

= ( ) ( ) < 0, .
r

k

n i n m
i

i

z n F x n n                                                    (18) 

We claim that 0nx  eventually. Suppose on the contrary that > 0nz  for 
1 0>n n n . Then, for 

2 1>n n n , we have  

(1 ) > 0.n n n n nz x x x                                                            (19) 

Thus, inequality (9) follows from Theorem 2.1. Since ( )nx  is unbounded, it follows from (19) that ( )nz  

is also unbounded, and hence 
2> 0,nz n n . Applying Corollary 2.2, we find  

 

( 1)

1 1

21

1
, 2 .

( 1)! 2

k

k k

n n nk

n
x z z n n

k
                                            (20) 

Therefore, in view of (20), for 
3 2>n n n  we obtain  

( 1)

2 1

1

( ) ( )

1
.

( 1)! 2

n m n m
i i

k
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n mk i

F x G x

n m
            M NG G z
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It follows from (9) and the above inequality that 1k

nz  is an eventually positive solution of  

( 1)

2

1
=1

1
( ) 0.

( 1)! 2

kr
i

n i n mk i
i

n m
w n M NG G w

k
 

In view of the conditon (14), this is a contradiction to Theorem 2.3. Hence, 0nx  eventually. This 

implies that 
nx  as n , where 0< < . 

Since =n n n nz x x , we get  

lim = (1 lim ) (1 ) .inf infn n
n n

z  

Hence, ( )nz  is eventually positive and (9) holds. Since n nz x  and ( )nx  is nonincreasing eventually, 

( )nz  is also nonincreasing eventually. Thus, 
1nz  as n , where 10 < < . Given 

1(0, ) , there 

exists an integer 4 0>n n  such that  

1 1 4< < , .nz n n                                                             (21) 

Let =m j  be as in Corollary 2.2. For 5 4>n n n , using (21) and Corollary 2.2 successively, we obtain  

1
2

1
2

1
1

2
1

1 ( 1)
151

1

( 1 )( 1) ( 1) 11
5

1
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(2 )

( 1)!

1
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( 1)!

n
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j k k
k

n

j k k n k k

n

z
z z
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  z
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It follows that for 1

52 2kn n k ,  

( 1 )( 1) ( 1) 11

1

1

( 1)( )( 1)
11

1

1

1 1
2 ( )

( 1)! 2

2 ( )
.

( )( 1)! 2

j k k k k

n nk

kj k k
k
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z n z
k

n
  z
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                                       (22) 

It is easily seen that 
( )( 1)

1

1

2 ( )
(0,1)

( )( 1)!

j k k

k
. By (22), for 

6 5>n n n , we get  

( 1)( )( 1)
2 11

1
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( ) ( ) ( )

2 ( )
.

( )( 1)! 2
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i i i

kj k k
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It follows from (9) and the above inequality that 1k

nz  is an eventually positive solution of  

( 1)( )( 1)
2 1

1
=1 1

2 ( )
( ) 0.

( )( 1)! 2

kj k kr
i

n i n mk i
i

n m
w n M NG G w

k
 

In view of the conditon (14), this is a contradiction to Theorem 2.3. The proof is complete. 

THEOREM 2.7. Let k  be even. Assume that 
01,n n n  and 

=1 =1

( ) =
r

i

i

. Then, the equation (3) is 

oscillatory.  

Proof. Let ( )nx  be a nonoscillatory solution of (3) with > 0, > 0n nx x  and > 0n m
i

x  for all 
0 0n n N  

and =1,2, ,i r . Setting =n n nz x x , we get 
0> 0,nz n n  and the inequalities (8) and (9) are satisfied. 

Summing (3) from 
0n  to 1n  and using (9), we obtain  

1 1

0
= =1 = =1

0 0

1 1
= ( ) ( ) > ( ) ,

r r
k k

n i m n i m
i i

n i n i

n n
z F x z Nx  

which implies  

= =1
0

( ) < .
r

i m
i

n i

x                                                              (23) 

Next, we prove that if lim > 0inf n
n

x , then 
=1 =1

( ) <
r

i

i

. Indeed, suppose the contrary that 

=1 =1

( ) =
r

i

i

. Put 
0>

= , =1,2, ,inf
im

n

L x i r . Then, we have  

= =1 = =1
0 0

( ) ( ) = ,
r r

i m i
i

n i n i

x L  

which contradicts (23). 

Since k  is even, from Theorem 2.1, we see that =m j  is odd and hence 0> 0,nz n n . Therefore,  

2 1 00 < = , > ,n n n nz z x x n n n  

or 2 1> ,n nx x n n . This implies lim > 0inf n
n

x . We have seen that this leads to 
=1 =1

( ) <
r

i

i

, which is a 

contradiction to 
=1 =1

( ) =
r

i

i

. The proof is complete. 
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THEOREM 2.8. Let k  be odd. Assume that 
01,n n n  and 

=1 =1

( ) =
r

i

i

. Then, every solution of (3) 

either oscillates or tends to zero as n .  

Proof. Let ( )nx  be a nonoscillatory solution of (3) with > 0, > 0n nx x  and > 0n m
i

x  for all 
0 0n n N  

and =1,2, ,i r . Assume, furthermore, that ( )nx  does not tend to zero as n . From Theorem 2.1, we see 

that =m j  is even. If > 2j , then we obtain 
0> 0,nz n n . Proceeding as in the proof of Theorem 2.7, we 

obtain a contradiction. If = 0j , then from Theorem 2.1 we have 
0< 0,nz n n . Thus, 

nz  as n , where 

0< < . For (0, ) , there exists an integer 
1 0>n n  such that  

1= > > 0, .n n nz x x n n  

Hence, lim > 0inf n
n

x . Proceeding as in the proof of Theorem 2.7, we obtain 
=1 =1

( ) <
r

i

i

, which is a 

contradiction to 
=1 =1

( ) =
r

i

i

. The proof is complete. 
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