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Abstract. Small object detection is a very popular research field in computer vision. 

In this paper, we use the current good performance YOLOv8 and EfficientNet-MBConv 

to analyze the detection of small objects and compare them. The results show that Effi-

cientNet-MBConv using YOLOv8 has better precision and box(P) than using other methods. 
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Introduction. Object detection serves as a vital research area within computer 

vision, laying the foundation for more intricate visual tasks. It acts as a cornerstone for 

understanding images and facilitates diverse vision pursuits like segmentation, scene 

comprehension, object tracking, image description, and event identification.  

Tackling small object detection has historically posed a significant challenge in this 

domain. Small objects are characterized by their diminutive image sizes, needing spe-

cial attention during detection. The definition of small objects can vary based on abso-

lute or relative size criteria. In the COCO [1] dataset, for example, objects sized below 

32 × 32 pixels qualify as small objects in terms of absolute size. On the other hand, rela-

tive size criteria, as per the International Society of Optical Engineering, consider an object 

small if it occupies less than 0.12% of a 256 × 256 pixels image, indicating a minuscule 

imaging area. When compared to regular-sized objects, small objects tend to occupy 

a minor portion of the image, featuring lower resolution and less pronounced visual char-

acteristics. The reduced pixel coverage of small objects underscores their challenge, 

as they possess limited detail for traditional object detection algorithms to effectively 

detect and delineate. 

Object detection methods based on deep learning can be roughly divided into 

the following three categories, two-stage object detection algorithms RCNN, Faster 

RCNN, FPN, single-stage object detection algorithm YOLO, SSD, and Transformer-based 

object detection algorithm DETR. One of the core components of the above algorithm 

is the convolution layer, and the overall structure of the convolutional neural network 

includes the following parts: input layer, convolution layer, pooling layer, fully con-

nected layer and output layer. Among them, the function of the convolution layer is to 

perform a convolution operation on the input image or feature map and output the 

convolved feature map. The number and size of convolution kernels can be set freely. 
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The core idea of the convolutional neural network is to extract local features of the 

input image through convolution operations, and use these features for the next step 

of processing and classification.  

Mingxing Tan et al. [2] proposed a new scaling method that uses neural architec-

ture search to design a new baseline network and scale it up to obtain a family of models 

called EfficientNets. Mark Sandler et al. [3] described a new mobile architecture, Mo-

bileNetV2, that improves the state of the art performance of mobile models on multiple 

tasks and benchmarks as well as across a spectrum of different model sizes. And inspired 

by the MobileNet V2 architecture, MBConv (Mobile Inverted Residual Bottleneck Convo-

lution) enhances feature learning with increased efficiency. In this paper, we consider in 

detail combining the EfficientNet-MBConv with YOLOv8 [4], compare it with other meth-

ods and test it. The results show that EfficientNet-MBConv using YOLOv8 has better result. 

Methodology. EfficientNet incorporates principles such as efficient scaling, em-

ploying a compound scaling method for uniform adjustment of model dimensions, uti-

lizing efficient building blocks like MBConv and depth-wise separable convolutions 

for enhanced feature representation while minimizing computational complexity, in-

tegrating the Swish activation function to boost feature learning capabilities, and of-

fering multiple model variants (B0 to B7) with varying depths and widths to accommo-

date diverse computational needs and accuracy requirements, ensuring flexibility 

in model selection. 

The structural configuration of the EfficientNet-B0 baseline network is shown 

in the table 1. 

Table 1. – EfficientNet-B0 baseline network – Each row describes a stage i  

with îL layers, with input resolution ˆ ˆ,i iH W  and output channels îC   

 

There are a total of 9 stages in B0. The convolutional layers in the table are fol-

lowed by BN and Swish activation functions by default. Stage 1 is a 3×3 convolutional 

layer. For stage 2 to stage 8, MBConv is stacked repeatedly. 
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Figure 1. – Structure of Mobile Inverted Residual Bottleneck Convolution module 

There are five operations in MBConv module: 

(1) Use a 1×1 convolution to increase the dimension, and its output channel is n 

times the input channel. 

(2) Follow by a DW convolution. 

(3) Use an attention mechanism to adjust the feature matrix through a SE 

module. 

(4) Perform dimensionality reduction through 1×1 convolution.  

(5) Follow a dropout layer. 

Results and discussion. In experiments we use DOTA-v2.0 [5] as our dataset, 

which is a large-scale dataset for object detection in aerial images. It can be used to de-

velop and evaluate object detectors in aerial images. DOTA-v2.0 collects more Google 

Earth, GF-2 Satellite, and aerial images. There are 16 common categories (planes, hel-

icopters, ships, vehicles, swimming pools, etc.). 

The experiment was completed on the AutoDL platform using Nvidia GeForce 

RTX 3090 24268MiB. The image size used for training is 640, set batchsize to 4, train 

for 100 epochs. The experimental results are shown in the table 2. 

Table 2. – Comparison results 

Detector precision box(P) recall parameters mAP50 mAP50-95 

YOLOv8n 0.59761 0.567 0.27641 3008768 0.30482 0.17714 

YOLOv8_EMBC 0.61641 0.622 0.2522 3352976 0.27447 0.15919 

YOLOv8_EMSC 0.57541 0.559 0.27268 2720256 0.29955 0.17388 

YOLOv8_EMSCP 0.52958 0.534 0.28195 2874112 0.30034 0.17516 

YOLOv5n [6] 0.52834 0.528 0.27819 2506064 0.29409 0.16986 

YOLOv5_EMBC 0.58955 0.589 0.24519 3330464 0.25664 0.14662 

YOLOv5_EMSC 0.59309 0.604 0.27113 2217552 0.28375 0.16694 

YOLOv5_EMSCP 0.50831 0.593 0.26244 2371408 0.28423 0.16529 

Experiments show that when using EfficientNet-MBConv for object detection in 

YOLOv8, the precision and box(P) indicators are the best. In other words, it enhances 
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the model's ability to accurately locate objects and displays clearer class boundaries, 

thereby helping to improve the accuracy of object classification. 

   
 a b 

a – The result of YOLOv8n; b – The result of YOLOv8_EMBC 

Figure 2. – Example of results 

In addition, the poor performance of this method in mAP and recall indicators 

may be because the new method may bring challenges to accurately locate objects 

and have a negative impact on the above indicators. It is also possible that the new 

method resulted in higher false negatives, thus lowering the recall rate. These issues 

will be what we need to explore in next step. 
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