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Abstract. This paper examines the problem of channel resource occupancy
prediction using Radio Environment Maps (REM) based on Long Term Evolution
(LTE) for a cognitive communication system. REM is a spatiotemporal database in
the form of a resource grid with passing traffic in cells. For prediction, the
Kolmogorov-Arnold network (KAN) architecture is used. A model structure has
been developed that collects data, trains and tests KAN. The predictive model
control algorithm is implemented in Python. MatLab was used to prepare input
data and implement the LTE simulation model. Experiments are carried out and
results of free channel resource prediction based on KAN and long-term memory
are presented.
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1. Introduction

Currently, communication systems face the problem of spectrum scarcity. One solution
is dynamic spectrum access. Its implementation is the technology of cognitive radio
(CR). Licensed primary users (PUs) do not always fully utilize the frequency resources
allocated to them in the time and space domains. CR devices are capable of assessing
the radio frequency (RF) environment around them, detecting currently idle channel
resources, and using them for communication between secondary users (SUs). When
PUs appear on the channel, such devices must immediately release the resources they
occupy.

Traffic in communications systems is a partially stochastic process, but contains
patterns that can be extracted and predicted. Among the artificial neural networks
(ANN), the architectures used for prediction are feed-forward neural networks (FNN),
convolutional neural networks (CNN), and recurrent neural networks (RNN).

FNN, or multi-layer perceptron (MLP), is a classic ANN architecture containing
multiple unidirectional fully connected neural layers in the structure. FNN is a
universal solution for forecasting problems, but requires a large amount of data and
computing resources for training. CNN architecture is used for pattern recognition in
images (feature extraction), but is also capable of making predictions and representing
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the results as indices from a list of output states (classification). CNN has the
disadvantages of FNN and also requires tuning many internal parameters to achieve
high accuracy. RNN implements feedback between layers, which allows you to
remember information obtained in previous stages of training.

The recurrent LSTM architecture has been successfully applied to prediction and
classification problems based on large data sets [1], including communication systems
[2]. LSTM is superior in accuracy to the statistical model autoregressive integrated
moving average (ARIMA) [3]. Next, the specifics of using LSTM in traffic prediction
for communication systems are considered.

In [4], the authors propose a spatiotemporal cross-domain neural network (STC-
Net) architecture based on hybrid conv-LSTM layers [5] for 5G wireless network for
traffic analysis on a 100x100 grid using input data: week number, hour of the day and
type of day (weekend or weekday).

Work [6] shows traffic prediction architecture similar to [4], but using fully
connected, convolutional, and LSTM layers in a single model. In contrast to [4],
forecasting was performed for time series, i.e. for a sequence of traffic data over a time
interval in a limited spatial area. The model demonstrates higher accuracy compared to
other deep learning models: DenseNet, Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Gate Recurrent Unit Network (GRU).

Therefore, different ANN architectures can be combined to solve the forecasting
problem. At the same time, the developers [4] note that their model is highly complex
and requires a lot of training time. It follows that with a similar approach (architectural
combination), the model [6] will have similar disadvantages.

In [7], the authors use a 4-layer (20% dropout) LSTM model to predict encrypted
traffic from multiple LTE base stations (BSs) based on time series (32 input samples (1
hour interval) and 1 output sample). The advantage of LSTM over ARIMA is shown to
be on average 12% in terms of the following indicators: mean square error (MSE),
mean absolute error (MAE) and R2 score. However, the model accuracy [7]
(MSE = 0.05) is not an ideal result, since the input data had a simple predictable
structure, and training was carried out on a huge number (~1 million) of records. In [8],
the authors propose a 4-layer LSTM model with exponential smoothing (SES) and a
smaller dataset (~120,000 records) compared to [7] for mobile traffic prediction. The
achieved MSE was 10-4—10-5 with an actual average prediction accuracy of 91%.

Based on the analysis, it follows that setting up an LSTM model with data in mind
is a complex task, which is determined by many internal factors (type of input data,
data size, layer configuration, etc.) and external factors (limited computing resources,
training time and operating speed).

The LTE cellular communication system has features of traffic generation between
network nodes. The work [9] compares different approaches to radio environment map
(REM) state prediction based on real LTE data on a 100x100 grid: Received Signal
Strength Indicator (RSSI), Reference Signal Received Power (RSRP), and Global
Positioning System (GPS). According to RMSE (root MSE), the following approaches
showed the greatest accuracy: extremely randomized tree regressor (ERTR), bagging,
KNN and regression tree. However, [10] showed that SVM is comparable in accuracy
and superior in speed, and [11] noted Naive Bayes classifier, but their accuracy is lower
than deep learning approaches, including LSTM.

Since some aspects of REM can be represented as two-dimensional arrays, CNN
models are also used for prediction. In [12], a DeepREM model based on a
convolutional U-Net and a conditional generative adversarial network (CGAN) was
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used to analyze the BS coverage and RSRP parameters. However, such methods do not
use a path loss model and are data-driven only.

Based on an analysis of existing solutions for the problem of traffic forecasting in
communication systems, we can conclude that the best approach is to use LSTM (or its
modifications). LSTM provides high prediction accuracy for large amounts of data
containing hidden patterns.

Recently, the KAN architecture [13] was proposed as a promising alternative to
MLP: it demonstrates higher accuracy with a similar number of parameters and offers a
visual interpretation of the network. A special feature of KAN is the implementation of
activation functions on edges instead of nodes, i.e. training activation functions instead
of using ready-made functions (Tanh, ReLU or Softmax). Currently, forecasting the
channel resources state for communication systems using KAN is not performed, so
this article evaluates the suitability of this architecture for this task.

In [14], a simulation model of an LTE communication system is presented. The
model generates data reflecting the dynamics of the state of the radio environment in
the form of a map (REM). The model simulates LTE BS and user equipment (UE)
objects. Users act according to an individual schedule of communication sessions and
movements across map cells, formed on the basis of a Markov process. In the LTE
model, a KAN-based model will be used to predict occupied channel resources and
compared with LSTM.

2. Kolmogorov-Arnold neural network

The KAN architecture implements a system of nodes and edges similar to MLP, but the
edges contain parameterized curves (splines). Their parameters change during the
training process, and the nodes simply sum them up as we can see in figure la. The
authors of the original paper [13] compare the number of KAN and MLP parameters to
be trained. The comparison shows higher requirements for KAN, but the authors argue
that MLP requires more N neurons for each of the L layers to achieve the same
accuracy.

The architecture supports pruning, which removes nodes with weights below a
threshold from the trained network as shown in figure 1b. This operation makes it
possible to estimate the sufficient size of the model for the task, facilitates, and speeds
up its work (see figure 1c¢).
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Figure 1. KAN architecture diagram [13]



336 R. Bohush et al. / Spectrum Hole Prediction in LTE-Based Cognitive Radio System

The authors of CAS note its low learning rate. The training was implemented on a
central processing unit (CPU) with small data sets using software implemented in
Python and made publicly available [15].

In [16], KAN is used to predict satellite traffic time series. The authors compare
this approach with MLP and conclude that KAN has higher efficiency and performance.
Their 4-layer MLP network with 329,000 parameters achieved an MSE of 6.12x10-3
after training, while the 4-layer KAN network with 109,000 parameters achieved an
MSE of 5.08%10-3. As in the original work [13], a paper [16] indicates a positive effect
of increasing the parameters G and k on the accuracy of the model.

The novelty of KAN determines the lack of assessments for its use in terms of
speed and quality of training on large and complex data. There is no information about
the specific KAN requirements for computing devices. This makes it difficult to use
KAN effectively in the context of this work. However, KAN implementations already
exist that enable training using graphics processing units (GPUs).

3. Structure of REM cell occupancy prediction model based on KAN

The LTE simulation model [14, 17] generates output files with a step of T LTE frames,
their structure is presented in Table 1. The LTE network resource grid is defined as the
passing traffic in a cell for 10 ms.

Table 1. Structure of the simulation model output file

Parameter Data size and type Example values Description
XXxY cells by 5x5 cells by .
rem Lx20 bool 15620 bool REM grid
frame unit 2900090000 LTE frame number

Each file contains an XXY grid of REM cells represented by L rows of resource
blocks (RBs) in the frequency domain and 20 slots (LTE frame) in the time domain [14,
18]. Each cell provides a matrix of Lx20 samples that represents the busy state of a
time-frequency resource of size [0.5 ms; 180 kHz].

We have developed an algorithm (see Figure 2) involving data collection, training
and testing of KAN to predict the state of REM cells, which consists of the following
steps:

1. Block reading the configuration file «save.mat» and output files of the LTE
simulation model, unpacking them into a preliminary structure presented in Table 2.
All structure values are normalized.

2. A block for reading the reference file of the user schedule «week.mat» with a
table of correspondence between the day number and the following parameters: day of
the week (Mon-Sun), type of day (working, weekend, holiday), week number (1-4).

Obtaining inputs and outputs for the predictive model. The input data is calculated
based on the fields «line», «sample», «<numday» and the content of the file «week.mat»,
while the output data corresponds to the field «status» (Table 2).

3. Block for combining and splitting the received data into sets: training (60%),
testing (20%) and validation (20%).

4. Block for initializing the KAN model, training, testing and saving for
subsequent use in the LTE simulation model.
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Figure 2. Data collection, training and testing of KAN to predict channel resources

Table 2. Preliminary data structure

Parameter Data size and type Range Description
status 20 bool Oorl Slot statuses on the RB line
frame uint 0..N Frame number
line uint 1..156 RB line number
sample uint 1...864 Sample number in day
numday uint 1..336 Day number

4. Experimental results

The developed forecasting model was implemented in Python 3.10. To implement
KAN, the program code was adapted from the repository [19] using the PyTorch
framework. The LTE model and data preparation are implemented in MatLab 2023.
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The LTE model generated data at 100 second intervals (T=10000) over simulated days
over 12 months (864 samples per day). The generated data size was 894,660 records.

The KAN model was initialized and trained with parameters: G = 3, k = 3, LBFGS
optimizer, MSE estimation, 500 epochs. The correct comparison of models for
different architectures was ensured by choosing layer configurations in which the
number of parameters for the models would be equal.

Figure 3a shows the KAN model after training. The input layer is shown on the left
(5 nodes) and the output layer is shown on the right (20 nodes). The grey levels of the
lines reflect the weight values of the model nodes. Figure 3b shows the KAN model
after pruning. As a result of the operation, nodes with a weak effect on the prediction
result were removed.
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Figure 3. KAN diagrams with different the number of nodes

The reduced model at the threshold th . =0.07 showed a decrease in accuracy by

prune
5.72% when the number of parameters was reduced by 1.4 factor (model configuration
after pruning [5, 4, 5, 5, 4, 3, 20]). Processing speed increased by 1.5 factor for the
pruned model. Thus, in KAN applications where performance is important, the prune
can be used with little loss of accuracy. Figure 4 shows the KAN and LSTM training
graphs, and the resulting metrics are presented in Table 3.
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Table 3. Test results of trained models based on various ANN architectures

Model MSE in training Actual accuracy, %
KAN 0.0499 92.564
Pruned KAN, th = 0.04 - 86.844
LSTM 0.0619 91.206

Actual accuracy was measured by binarizing the model results ( y,,, ) with a

threshold of A, =0.5 and calculating the ratio of correctly predicted samples to all

analyzed samples compared to the validation data y,, . The 4, was selected
experimentally using the formula:
thy, = min (MSE (3, Vg > th)), 20 £ =0,0.05,0.1, ..., 1 (1)

Figure 4 shows the KAN model learns faster and more accurately than the LSTM
model with the same number of parameters. KAN provides a reduction in MSE by 1.5
factor compared to LSTM.
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Figure 4. Prediction errors using KAN and LSTM models for first 200 training epochs

5. Conclusions

A model is proposed for predicting channel resources of an LTE cellular
communication system, which can be used by secondary users with cognitive radio
technology. An algorithm for creating and implementing a forecasting system is
described, which includes the main steps: generating input data, training and testing a
model based on the KAN architecture. The accuracy of the predictive model achieved
was 92.564%. Comparison of forecasting results showed the advantage of using KAN
over LSTM in terms of accuracy.
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