УДК 666.9:691.32

ВЛИЯНИЕ КОМПЛЕКСА ИЗ ПЛАСТИФИЦИРУЮЩИХ И ВОЗДУХОВОВЛЕКАЮЩИХ ДОБАВОК НА СВОЙСТВА ЦЕМЕНТНОГО ТЕСТА И ЦЕМЕНТНОГО КАМНЯ

В.В. Марковцова¹, Л.М. Парфенова²

- ¹ Филиал «Новополоцкжелезобетон» ОАО «Кричевцементношифер»,
- г. Новополоцк, Республика Беларусь
- ² Полоцкий государственный университет имени Евфросинии Полоцкой,
- г. Новополоцк, Республика Беларусь

e-mail: vik7265746773@gmail.com, l.parfenova@psu.by

Представлены результаты исследований влияния пластифицирующих и воздухововлекающих добавок и их комплексов на реологические и физико-механические свойства цемента. Установлено, что в составе полифункциональных комплексов, гиперпластификаторы в сочетании с воздухововлекающие добавками, могут показывать больший пластифицирующий эффект, увеличивать время структурообразования и прочность цементного камня. Показана эффективность комплекса, включающего гиперпластификатор Хидетал ГП-9-Альфа и воздухововлекающую добавку Хидетал П8.

Ключевые слова: цементное тесто, сроки схватывания, нормальная густота, цементный камень, прочность, условия твердения.

THE EFFECT OF A COMPLEX OF PLASTICIZING AND AIR-ENTRAINING ADDITIVES ON THE PROPERTIES OF CEMENT PASTE AND CEMENT STONE

V. Markovtsova¹, L. Parfenova²,

- ¹ Branch "Novopolotskzhelezobeton" JSC "Krichevtsemetnoshifer", Novopolotsk, Republic of Belarus
- ² Euphrosyne Polotskaya State University of Polotsk, Novopolotsk, Republic of Belarus e-mail: vik7265746773@gmail.com, l.parfenova@psu.by

The results of studies of the influence of plasticizing and air-entraining additives and their complexes on the rheological and physical-mechanical properties of cement are presented. It is established that in the composition of polyfunctional complexes, hyperplasticizers in combination with air-entraining additives can show a greater plasticizing effect, increase the time of structure formation and the strength of cement stone. The efficiency of the complex, including the hyperplasticizer Hidetal GP-9-Alpha and the air-entraining additive Hidetal P8, is shown.

Keywords: cement paste, setting time, normal density, cement stone, strength, hardening conditions.

Введение. Исследованиями [1-4], показано, что химические добавки в бетон оказывают влияние на реологические и физико-механические свойства цемента. На эффективность добавки также влияют температура, водосодержание (водоцементное отношение) и другие технологические факторы. Химические добавки оказывают избирательное влияние на разные клинкерные минералы цемента, что, как отмечается в работах [5, 6] дает возможность целенаправленного управления процессами твердения бетонов с помощью добавок и подбору новых эффективных композиций добавок.

Целью выполнения данного исследования является изучение влияния гиперпластификаторов и воздухововлекающих добавок на реологические и физико-механические свойства портландцемента в условиях нормально-влажностного твердения и тепловлажностной обработки. Предполагалось, что влияние химических добавок на клинкерные минералы цемента может быть усилено за счет их объединения в полифункциональный комплекс.

Характеристика материалов и методика проведения исследований. Для проведения исследований приняты химические добавки разного механизма действия: Стахемент 2000М, Микропоран, ГП-9-Альфа, Хидетал П8, Пенетрон, которые были объединены в следующие комплексы химических добавок:

– комплексный модификатор КМ №1:

Стахемент 2000М (гиперпластификатор), 0,2% от массы цемента;

Микропоран (воздухововлекающая добавка), 0,1% от массы цемента;

– комплексный модификатор КМ №2:

Хидетал ГП-9-Альфа (гиперпластификатор), 0,2% от массы цемента;

Хидетал П8 (воздухововлекающая добавка), 0,1% от массы цемента;

Пенетрон Адмикс (гидроизоляционная добавка), 0,2% от массы цемента;

– комплексный модификатор КМ №3:

Хидетал ГП-9-Альфа, 0,2% от массы цемента;

Хидетал П8 (воздухововлекающая добавка), 0,1% от массы цемента;

– комплексный модификатор КМ №4:

Хидетал ГП-9-Альфа, 0,2% от массы цемента;

Хидетал П8(воздухововлекающая добавка), 0,2% от массы цемента.

В экспериментальных исследованиях применялся портландцемент ЦЕМ І 42,5Н производства ОАО «Кричевцементошифер» по ГОСТ 31108. Для затворения цементного теста использовалась вода по СТБ 1114-98. Нормальная густота и сроки схватывания цементного теста определялись по ГОСТ 310.3. Испытания на прочность на сжатие проводились на прессе гидравлическом ПГМ-1000МГ4. Для определения прочности модифицированного цементного камня изготавливались образцы—кубики с ребром 20 мм (рисунок 1), твердение которых проходило при двух режимах: в камере нормально-влажностного твердения в течение 28 суток (НВТ) и в условиях низкотемпературной тепловой обработки в течение 2-х часов при температуре $t=60^{\circ}\text{C}$ с последующим твердением в нормально-влажностных условиях и испытанием в возрасте двух суток.

Рисунок 1. – Образцы-кубики цементного камня

Экспериментальная часть. Результаты определения сроков схватывания и нормальной густоты (НГ) модифицированного цементного теста представлены в таблице 1.

таолица 1. Влилние комплексных добавок на реологические своиства цемента										
Обозна- чение	Состав х	имической	и́ добавки,	% от масс	Сроки схват					
	Стахемент 2000М	Микро- поран	ГП-9- Альфа	Хидетал П8	Пенетрон	начало	конец	НГ, %		
Контр.						2 ²⁰	500	27,25		
M Nº1	0,2	-	-	-	_	2 ⁰⁵	4 ⁵⁵	26,85		
M Nº2	-	0,2	-	-	_	2 ²⁰	5 ¹⁰	27,20		
M Nº3	-	-	0,2	-	-	2 ¹⁰	4 ⁴⁵	26,45		
M Nº4	-	-	-	0,2	_	2 ²⁵	5 ⁰⁰	27,05		
M №5	-	-	-	-	0,2	2 ¹⁰	4 ⁵⁵	27,15		
KM Nº1	0,2	0,1	-	-	-	2 ¹⁵	4 ⁴⁰	26,75		
KM Nº2	-	-	0,2	0,1	0,2	1 ⁵⁷	4 ²⁰	26,5		
KM Nº3	-	-	0,2	0,1	-	2 ⁰⁵	4 ⁵⁰	26,15		
KM Nº4	-		0,2	0,2	-	2 ⁰²	4 ⁴⁵	26,05		

Таблица 1. – Влияние комплексных добавок на реологические свойства цемента

В процессе исследований однокомпонентные и комплексные добавки, вводились в цементное тесто с нормальной густотой 27,25. Введенные в количестве 0,2% от массы цементы, гиперпластификаторы Стахемент 2000М и Хидетал ГП9-Альфа привели к снижению водопотребности цементного теста соответственно на 1,5% и 2,9%. Пластифицирующих эффект Хидетал ГП9-Альфа увеличился в комплексе с воздухововлекающей добавкой.

К наибольшему сокращению времени начала схватывания на 15 мин привело введение гиперпластификатора Стахемент 2000М, при этом время конца схватывания сократилось на 5 мин, в целом время активного структурообразования увеличилось на 10 минут по сравнению с контрольным бездобавочным составом и составило 2 ч 50 мин.

Гиперпластификатор ГП-9-Альфа, также как, и гиперпластификатор Стахемент 2000М, приводит к сокращению времени начала и конца схватывания. Время сокращения для гиперпластификатора ГП-9-Альфа составило соответственно 10 и 15 минут, при этом время структурообразования не увеличилось, как и с гиперпластификатором Стахемент 2000М, но при этом сократилось на 5 минут по сравнению с контрольным составом и составило 2 ч 35 мин.

Исследование воздухововлекающих добавок Микропоран и Хидетал П8 на сроки схватывания цементного теста, показало, что они по-разному влияют на структурообразование цементного камня. Так, если воздухововлекающая добавка Микропоран не влияет на время начала схватывания, конец схватывания наступает на 10 минут позже и, в целом, продолжительность структурообразования составляет 2 ч 50 мин. То воздухововлекающая добавка Хидетал П8 приводит к увеличению времени начала схватывания на 5 минут, при этом время конца схватывания остается без изменений, время структурообразования сокращается на 5 минут по сравнению с контрольным составом и составляет 2 ч 35 мин.

Исследования показали, что гидроизоляционная добавка Пенетрон Адмикс, как и гиперпластификаторы Стахемент 2000М и ГП-9-Альфа, приводит к сокращению времени начала схватывания. С добавкой Пенетрон Адмикс цементное тесто схватывается на 10 минут раньше, время конца схватывания сокращается на 5 мин, таким образом время активного структурообразования в целом увеличилось на 5 минут по сравнению с контрольным бездобавочным составом и составило 2 ч 45 мин.

Введение добавок гиперпластификаторов Стахемент 2000М, Хидетал ГП-9-Альфа позволило увеличить прочность цементного камня в возрасте 28 суток при НВУ на 16,3% и 30%

соответственно. При тепловлажностной обработке наибольший прирост прочности показали образцы цементного камня, модифицированные комплексной добавкой Хидетал ГП9-Альфа-Хидетал П8-Пенетрон, прочность на сжатие выше прочности бездобавочного цементного камня на 80%. Снижение прочности на 9,5% зафиксировано при тепловлажностной обработке цементного камня модифицированного воздухововлекающей добавкой Микропоран.

При введении химических добавок в комплексе их влияние на реологические и физикомеханические свойства изменяется. Так, если гиперпластификатор Стахемент 2000М приводил к сокращению времени начала схватывания на 15 мин, то в комплексе КМ №1, в сочетании с воздухововлекающей добавкой Микропоран, сокращение времени начала схватывания составило уже только 5 мин, если время конца схватывания при введении гиперпластификатор Стахемент 2000М сокращалось на 5 мин, то в комплексе КМ №1 с воздухововлекающей добавкой Микропоран время конца схватывания сокращалось уже на 20 мин. При этом нормальная густота дополнительно снизилась на 0,4%, что свидетельствует об усилении пластифицирующего эффекта. Прочность после ТВО и в возрасте 28 суток НВТ увеличилась на 4,7% и 1,9% соответственно.

За основу комплексов КМ №2, КМ №3, КМ №4 взят гиперпластификатор Хидетал ГП-9-Альфа в количестве 0,2 % от массы цемента. Анализ влияния на сроки схватывания комплексов химических добавок КМ №3, КМ №4 показал, что при введении гиперпластификатора ГП-9-Альфа совместно с воздухововлекающей добавкой Хидетал П8 усиливается эффект сокращения срока начала схватывания. Так, если однокомпонентная добавка гиперпластификатора Хидетал ГП-9-Альфа обеспечивала сокращение срока начала схватывания на 10 минут, то в комплексе с воздухововлекающей добавкой Хидетал П8 сокращение срока начала схватывания составило 15 и 18 минут, соответственно при количестве добавки Хидетал П8 0,1% и 0,2% от массы цемента. Время конца схватывания увеличилось на 5 мин при совместном введении с добавкой Хидетал П8 в количестве 0,1% от массы цемента. Для комплекса гиперпластификатор Хидетал П-9-Альфа и воздухововлекающая добавка Хидетал П8, в количестве 0,2% от массы цемента, время конца схватывания не изменилось по сравнению со временем конца схватывания с однокомпонентной добавкой Хидетал ГП-9-Альфа.

Время структурообразования цементного камня увеличилось с 2 ч 35 мин с однокомпонентной добавкой гиперпластификатора Хидетал ГП-9-Альфа, до 2 ч 45 мин и 2 ч 43 мин в комплексе с воздухововлекающей добавкой Хидетал П8 в количестве 0,1% и 0,2 % от массы цемента соответственно. Влияние химических добавок на прочность цементного камня представлено на рисунке 2.

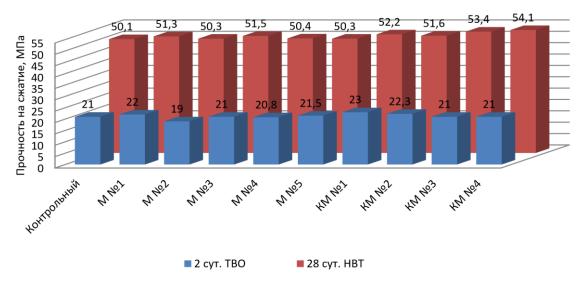


Рисунок 2. – Влияние химических добавок на прочность на сжатие цементного камня

Прочность на сжатие цементного камня в возрасте 28 суток при НВТ увеличилась с 65,2 МПа с однокомпонентной добавкой гиперпластификатора Хидетал ГП-9-Альфа (М№3), до 67,5 МПа и 68,5 МПа в комплексе с воздухововлекающей добавкой Хидетал П8 в количестве 0,1% (КМ № 3) и 0,2 % (КМ № 4) от массы цемента, что выше соответственно на 3,5% и 5 %. При этом совместное применение гиперпластификатора Хидетал ГП-9-Альфа и воздухововлекающей добавки Хидетал П8 не значительно повлияло на прочность цементного камня после ТВО, которая осталась в диапазоне 37 — 37,6 МПа.

К ускорению процесса структурообразования приводит включение в комплекс гиперпластификатора Хидетал ГП-9-Альфа и воздухововлекающей добавки Хидетал П8 третьего компонента - гидроизоляционной добавки Пенетрон Адмикс в количестве 0,2% от массы цемента (КМ №2). Данный комплекс добавок приводит к наибольшему сокращению времени начала схватывания по сравнению с контрольным составом, которое составляет 23 минуты. На максимальное значение сокращается и время конца схватывания на 40 минут по сравнению с контрольным составом. Сокращение времени структурообразования до 2 ч. 15 мин. привело к формированию менее прочной структуры цементного камня, на что указывает значение прочности в возрасте 28 суток НВТ 65,2 МПа, что ниже прочности на сжатие цементного камня 67,5 МПа с двухкомпонентной добавкой гиперпластификатора Хидетал ГП-9-Альфа и воздухововлекающей добавки Хидетал П8 (КМ №3) на 3,4%.

Далее были выполнены исследования по оценке эффективности комплексной химической добавки КМ №4 при применении портландцемента ЦЕМ II/A-Ш 42,5H со шлаком (Ш) от 6% до 20%, и портландцемента ЦЕМ II/B-Ш 42,5H со шлаком (Ш) от 21% до 35%.

Результаты определения сроков схватывания, нормальной густоты (НГ) и прочности модифицированного цементного камня представлены в таблице 2.

Таблица 2. – Реологические и физико-механические свойства шлакопортландцементов,
модифицированных комплексной химической добавкой

		мплексной	'	атывания,	НГ, %	Прочность на сжатие,			
	добавки, % от	массы цемента	4-1	ЛИН		МПа, в возрасте			
Вид цемента		Хидетал П8	начало	конец		2 сут.	7 сут.	28 сут.	
	ГП-9-Альфа					(TBO,	(TBO,	(HBT)	
						t=60 °C)	t=60 °C)		
ЦЕМ II/A-Ш 42,5H	-	-	240	530	27,5	16,8	26,6	46,8	
ЦЕМ II/A-Ш 42,5H	0,2	0,2	235	515	27,7	17,2	27,6	47,8	
ЦЕМ II/B-Ш 42,5H	-	-	250	550	28,8	15,7	24,8	43,7	
ЦЕМ II/В-Ш 42,5Н	0,2	0,2	240	545	28,75	16,8	26,3	43,9	

Портландцементы с шлаком ЦЕМ II/A-Ш 42,5H и ЦЕМ II/B-Ш 42,5H по сравнению с портландцементом ЦЕМ I 42,5H имели более продолжительные сроки схватывания: начало схватывания наступило позже на 20 мин. и 30 мин. соответственно, конец схватывания наступил позже на 30 мин. и на 50 мин. соответственно. Длительность структурообразования цементного камня на портландцементах с шлаком ЦЕМ II/A-Ш 42,5H и ЦЕМ II/B-Ш 42,5H составила соответственно 2 ч. 50 мин и 3 ч., что больше длительности структурообразования цементного камня на портландцементе ЦЕМ I 42,5H, которая составляет 2 ч. 40 мин.

Комплексная добавка КМ№4 по влиянию на сроки схватывания оказывает аналогичный эффект как на портландцемент ЦЕМ І 42,5Н, так и на портландцементы с шлаком ЦЕМ ІІ/А-Ш 42,5Н и ЦЕМ ІІ/В-Ш 42,5Н, для которых так же установлено уменьшение сроков схватывания. Так, сроки начала и окончания схватывания цемента ЦЕМ ІІ/А-Ш 42,5Н уменьшились соответственно на 5 мин. и 15 мин. по сравнению с не модифицированным портландцементом ЦЕМ ІІ/А-Ш 42,5Н; сроки начала и окончания схватывания цемента ЦЕМ ІІ/В-Ш 42,5Н уменьшились

соответственно на 10 мин. и 5 мин. по сравнению с не модифицированным портландцементом ЦЕМ II/B-Ш 42,5H.

Водопотребность портландцементов с шлаком ЦЕМ II/A-Ш 42,5H и ЦЕМ II/B-Ш 42,5H для получения теста нормальной густоты при введении комплексной химической добавки изменилась незначительно по сравнению с цементами без модификации.

Комплексная химическая добавка КМ№4 оказывает меньший эффект на прирост прочности на портландцементы со шлаком. Так, прочность портландцемента ЦЕМ II/А-Ш 42,5H в возрасте 2, 7 и 28 суток увеличилась соответственно на 2,4 %; 3,8 %; 2,1 % по сравнению с прочностью не модифицированного цементного камня, а прочность ЦЕМ II/В-Ш 42,5H в возрасте 2 и 7 суток увеличилась соответственно на 7 % и 6 %, в возрасте 28-ми суток осталась без изменений по сравнению с прочностью не модифицированного цементного камня.

Заключение. Исследование свойств портландцемента показало, что однокомпонентные добавки-гиперпластификаторы ГП-9-Альфа и Стахемент 2000М сокращают время начала и конца схватывания, а однокомпонентные воздухововлекающие добавки Микропоран и Хидетал П8, в зависимости от их химической природы, могут влиять как на начало схватывания, так и на конец схватывания модифицированного цементного теста.

В отличие от воздухововлекающих добавок гиперпластификаторы позволяют повысить прочность цементного камня в возрасте 28 суток и интенсифицировать набор прочности при тепловлажностной обработке. Наибольший рост прочности на сжатие комплексные химические добавки, включающие гиперпластификатор и воздухововлекающую добавку, обеспечивают на портландцементе без добавок. Модификация комплексной химической добавкой портландцементов со шлаком от 6% до 20% позволяет в возрасте 28 суток нормально-влажностного твердения получить значения прочности на сжатие сопоставимые с портландцементом без добавок.

Комплексная добавка, включающая гиперпластификатор Хидетал ГП-9-Альфа и воздухововлекающую добавку Хидетал П8, обеспечивает больший пластифицирующий эффект, увеличивает время структурообразования и прочность цементного камня, по сравнению с эффектом от применения по отдельности, входящих в её состав добавок.

ЛИТЕРАТУРА

- 1. Ратинов В.Б., Розенберг Т.И. Добавки в бетон. М.: Стройиздат, 1973. 207 с.
- 2. Рамачандран В.С. Добавки в бетон: Справочное пособие / В.С. Рамачандран, Р.Ф. Фельдман, М. Коллепарди; Пер. с англ. Т.И. Розенберг, С.А. Болдырев. М.: Стройиздат, 1988. 575 с.
- 3. Тараканов О.В. Химические добавки в растворы и бетоны: моногр. Пенза: ПГУАС, 2016. 156 с.
- 4. Батяновский Э.И. О механизме действия добавок ускорителей твердения бетона // Вестн. Брест. гос. техн. ун-та. 2004. № 1. С. 11—15.
- 5. Батяновский Э.И., Гуриненко Н.С. Бетон с полифункциональной кремнеземсодержащей добавкой. Минск: БНТУ, 2021. 195 с.
- 6. Юхневский П.И. Влияние химической природы добавок на свойства бетонов. Минск: Белорус. нац. техн. ун-т, 2013. 308 с.