

Физико-механические свойства пленок диазохинонноволачных фоторезистов на монокристаллическом кремнии, облученных электронами

Д. И. Бринкевич¹*, В. С. Просолович¹, С. А. Вабищевич², Н. В. Вабищевич², С. Б. Ластовский³ и Е. В. Точилин³

¹Белорусский государственный университет, пр. Независимости, 4, Минск, 220050, Беларусь ²Полоцкий государственный университет, ул. Блохина, 29, Новополоцк, 214400, Беларусь ³ Научно-практический центр НАН Беларуси по материаловедению, ул. Петруся Бровки, 19, 220072, Минск, Беларусь

* e-mail: <u>brinkevich@bsu.by</u>

Аннотация

В работе методом индентирования исследовано влияние облучения электронами с энергией 5 МэВ на адгезионные и прочностные свойства пленок диазохинонноволачных фоторезистов ФП9120, SPR-700 и S1813, нанесенных на пластины кремния методом центрифугирования. Установлено, что облучение приводит к увеличению значений истинной микротвердости фоторезистивных пленок, обусловленному сшиванием молекул фенолформальдегидной смолы. Показано, что значения удельной энергии отслаивания G фоторезистивных пленок возрастают при облучении. Экспериментальные результаты объяснены с учетом радиационно-химических и релаксационных процессов, протекающих как на границе раздела фоторезист/кремний, так и в объеме полимера.

Ключевые слова: диазохинонноволачный фоторезист, электронное облучение, адгезия, кремний, микротвердость.

Введение

Одним из основных процессов современной электроники является фотолитография [1]. Развитие нанотехнологий в современной электронике приводит к уменьшению проектных норм приборов, что определяет необходимость увеличения разрешения литографического процесса и в соответствии с критерием Релея обуславливает переход от ультрафиолевого актиничного излучения к более коротковолновым излучениям – рентгеновскому и электронному. Соответствующие специфические требования в данном случае предъявляются и к свойствам резистов, включая их адгезию к подложке, которая может изменяться в результате воздействия быстрых электронов. Ранее в [2, 3] показано, что γ-облучение и ионная имплантация могут существенным образом влиять на прочностные и адгезионные характеристики фоторезиста (ФР) марки ФП9120. Однако влияние электронного облучения на адгезию пленок диазохинонноволачных ФР к кремнию до настоящего времени не исследовалось.

Экспериментальная часть

В работе [4] метод индентирования был использовании для измерения адгезии тонких (толщиной \sim 1 мкм) пленок к стеклянным подложкам. Было показано, что при применении индентора Виккерса удельная энергия отслаивания пленок G может быть рассчитана по формуле

$$G = \frac{0,627H^2h(1-v^2)}{E(1+v+2(1-v)Hl^2/P)^2}$$
(1)

где *h* – толщина, *H* – микротвердость пленки; *v* – коэффициент Пуассона, *E* – модуль Юнга; *P* – нагрузка на индентор, *l* – длина трещины расслоения.

В настоящей работе мы использовали указанную методику для измерения адгезии к кремнию диазохинонноволачных резистов различных марок – ФП9120, SPR-700 и S1813. Значения параметров для расчета G определялись в соответствии с процедурой, изложенной в [5]. Микроиндентирование проводилось на приборе ПМТ-3 по стандартной методике при комнатной температуре. Для обработки экспериментальных данных использовались стандартные методы математической статистики [6]. Погрешность измерения G резистивных пленок составляла 11 %.

Пленки диазохинонноволачных фоторезистов толщиной 1,8 мкм наносились методом центрифугирования на поверхность пластин кремния с ориентацией (100) [2]. Облучение электронами с энергией 5 МэВ проводилось на линейном ускорителе электронов У-003 флюенсом $3 \cdot 10^{16}$ см⁻². Плотность потока электронов контролировалась с помощью цилиндра Фарадея и составляла $1 \cdot 10^{12}$ см⁻²с⁻¹. Температура образцов в процессе облучения не превышала 310 К.

Результаты и обсуждение

Измерения истинной микротвердости Н фоторезистивной пленки проводились при нагрузке 1 г, когда глубина проникновения индентора не превышала половины толщины пленки. В этом случае подложка не оказывает существенного влияния на значение микротвердости пленки [7]. Облучение 5 МэВ электронами приводило к увеличению значений истинной микротвердости фоторезистивных пленок (табл. 1), причем наиболее существенно (почти в 3 раза) в пленках SPR-700. Наиболее устойчивы к облучению пленки ФП9120, в которых рост микротвердости был минимален (~ 60 %). Полученные результаты коррелируют с данными [7], в которой показано, что у-облучение приводит к увеличению микротвердости пленок сополимеров метилметакрилата и метакриламида на кремнии. Рост истинной микротвердости фоторезистивных пленок при облучении обусловлен, вероятнее фенолформальдегидной смолы, всего. сшивками молекул являющейся основным компонентом (около 70-80 % по массе) диазохинонноволачных фоторезистов. Образование таких сшивок при облучении отмечалось ранее в работе [5] и было подтверждено методом нарушенного полного внутреннего отражения [8].

тиолици 1. Петниния микротвердеетв изенок фоторезнети					
Марка ФР	Толщина	Микротвердость, ГПа			
	пленки, мкм	исходный	облученный		
ФП9120	1,8	0,21	0,35		
SPR-700	1,8	0,14	0,40		
S1813	1,8	0,23	0,41		

Таблица 1. Истинная микротвердость пленок фоторезиста

Облучение электронами приводило к усилению адгезии (росту G) всех исследовавшихся ΦP (рис.1). Наиболее сильный рост G наблюдался в фоторезистах марки SPR700 с более низкой адгезией исходных пленок (табл.2). В этих ΦP после облучения адгезия возрастала ~ в 3 раза, в то время как в пленках $\Phi \Pi 9120$ наблюдался рост ~ в 2,5 раза, а для S1813 - менее чем в 2 раза (табл.2). В то же время при хранении пленок ΦP на кремнии около 3 лет наблюдался эффект снижения адгезии почти в 2 раза (рис.2 и табл.2). Отметим, что ранее в работе [3] было показано, что низкоинтенсивное (мощность дозы ~ 0,15 Гр/с) γ -облучение дозами до 300 кГр приводит к снижению значений удельной энергии отслаивания G фоторезистивных пленок марки $\Phi \Pi 9120$ на кремнии.

Actual Problems of Solid State Physics X International Scientific Conference

Таблица 2. Удельная энергии отслаивания *G* исходных и облученных пленок фоторезиста при нагрузке 50 г

p p / p				
Марка	Толщина	G, Дж/м ²		
фоторезиста	пленки, мкм	исходный	облученный	
ФП9120 свежая	1,8	1,65	3,80	
ФП9120 хранение	1,8	0,93	2,64	
SPR-700	1,8	0,92	3,06	
S1813	1,8	1,95	3,54	

Рисунок 1. Зависимости удельной энергии отслаивания G от величины нагрузки для пленок ФП9120 исходных (1) и облученных электронами флюенсом 3·10¹⁶ см⁻² (2).

Рисунок 2. Зависимости удельной энергии отслаивания G от величины нагрузки для пленок фоторезиста ФП9120 свежеприготовленных (1) и после хранения в течение 3 лет (2).

Полученные экспериментальные результаты являются следствием реализации комплекса радиационно-химических и релаксационных процессов, протекающих как на границе раздела фаз фоторезист/кремний, так и в объеме полимерной пленки.

В фенолформальдегидных смолах, являющихся основой ФР, при электронном облучении наблюдаются преимущественно реакции рекомбинации радикалов (в основном феноксильного и метиленового типов), приводящие к сшиванию молекул ФР. В результате сшивания полимер становится более жестким и теряет свои пластические свойства, что приводит к увеличению его микротвердости. При индентировании облученного ФР нагрузка в основном передается на межфазную границу полимер-кремний, в то время как в необлученной ФР пленке при надавливании происходит изменение конформации макромолекул под пирамидкой, из-за чего нагрузка распределяется на больший объем полимера. С другой стороны, при сшивании молекул фенолформальдегидной смолы увеличивается плотность ФР пленки. Это приводит к релаксации ростовых упругих напряжений на границе раздела фоторезист/Si, приводящих к ухудшению адгезии полимера к кремнию. Кроме того, у границы раздела радикалы феноксильного и метиленового типа могут взаимодействовать с естественным окислом на поверхности Si с образованием адгезионных Si-O-C связей. Этому способствует образование при облучении оборунации связей в Si.

Важно также учитывать явление накопления электрического заряда в полимере и оксиде при воздействии ионизирующего излучения. Основную роль в накоплении заряда при облучении в диоксиде кремния играют точечные парамагнитные дефекты, которые обычно связываются с наличием оборванных связей в структуре Si/SiO₂ [9]. Из них наиболее важными с точки зрения накопления заряда в диэлектрике являются Е'-центры. Эффект накопления электрического заряда связан с тем, что электроны, выбиваемые при ионизации полимерной пленки, стекают на границы раздела фаз. В нашем случае они в основном накапливаются в приповерхностном слое Si. При этом основное падение напряжения приходится на слой полимера толщиной ~ 10 нм, контактирующий с кремнием. Это поле может модифицировать структуру полимера вблизи границы раздела фаз и изменять адгезию ФР пленки к кремнию.

Заключение

Таким образом, установлено, что облучение приводит к увеличению значений истинной микротвердости ФР пленок, обусловленному сшиванием молекул фенолформальдегидной смолы. Показано, что значения удельной энергии отслаивания G фоторезистивных пленок на кремнии при облучении возрастают, а при длительном хранении снижаются. Наблюдаемый эффект связан с совокупностью радиационно-химических и релаксационных процессов, протекающих как на границе раздела фоторезист/кремний, так и в объеме полимерной пленки.

Список использованных источников:

[1] У. Моро Микролитография. Принципы, методы, материалы. Ч. 2. М.: Мир, 1990. 632 с.

[2] С.А. Вабищевич [и др.] Химия высоких энергий. № 1 (2020) С.54-59.

[3] С.А. Вабищевич [и др.] Химия высоких энергий. №6 (2021) С.461-468.

[4] J. Malzbender [et al.] Materials Science and Engineering R. V.36 (2002) P.47-103.

[5] С.А. Вабищевич [и др.] Вестник Полоцкого гос. университета. № 12(2020) С.60-64.

[6] Д.И. Бринкевич[и др.] Вестник Полоцкого гос. университета. № 9(2010) С.92-97

[7] С.А. Вабищевич [и др.] Вестник Полоцкого гос. университета. № 12(2016) С.51-57.

[8] С.Д., Бринкевич [и др.] Химия высоких энергий. №1 (2021) С.66-75.

[9] В.С. Першенков [и др.] Поверхностные радиационные эффекты в элементах интегральных микросхем. М.: Энергоатомиздат, 1988.