АЛГОРИТМ РАСЧЕТА МАРШРУТОВ ПРОКАТКИ СТАНОВ ХОЛОДНОЙ ПРОКАТКИ ТРУБ

С. В. ПИЛИПЕНКО

Полоцкий государственный университет имени Евфросинии Полоцкой, г. Новополоцк, Республика Беларусь

Разработана методика расчета маршрутов холодной прокатки труб, включающий в себя несколько операций итерации, что позволят производить оптимизацию параметров маршрута по основным прокатки труб из большинства марок сталей и сплавов, с целью снижения расходов заготовки на тонну готовой продукции.

Методами холодной прокатки и волочения производят, в том числе, высококачественные трубы специального назначения из широкого спектра марок сталей и сплавов, которые используются во всех отраслях промышленности, аэрокосмической отрасли, строительстве и других сферах. Заготовкой для холодной деформации труб служит горячекатаная труба [1-2]. В калькуляции расходов на холодный передел труб стоимость заготовки может достигать 80%, поэтому любые мероприятия, направленные на снижение расхода заготовки на тонну готовой продукции, актуальны. На расходный коэффициент влияет множество факторов, среди прочих в данной работе выделена методика расчёта маршрутов прокатки. На основании рассчитанного маршрута прокатки рассчитывают калибровку инструмента и изготавливают его. Ошибки в расчётах маршрута в итоге грозят трубопроизводителю значительными убытками.

Исходными данными для расчета маршрута прокатки являются; диаметр и толщина стенки готовой трубы (S_n , D_n) и заготовки ($D_{3a\epsilon,}$, $S_{3a\epsilon,}$); максимальную (для данной матки стали) вытяжку трубы в проходе и величину подачи μ_{max} и m; разностенность трубызаготовки и готовой трубы (δ , %). Среди прочего, для каждого прохода, определяют: обжатие по площади поперечного сечения $\varepsilon_{F,n}$; по толщине стенки $\varepsilon_{S,n}$ и диаметру $\varepsilon_{D,n}$ и пр. На данном же этапе выбираю типы применяемых оправок (конусная, или с криволинейной образующей). При расчете всегда проверяется соблюдения правила [1, 2–4]:

$$D_{n-1} - 2S_{n-1} > D_n - 2S_n \text{ или } d_{n-1} > d_n$$
 (1)

где d — внутренний диаметр трубы.

На рисунке 1 показана разработанный алгоритм расчета маршрута холодной прокатки труб.

Исходными данными для расчета, также, являются: величина обжатия по площади поперечного сечения в последнем проходе ($\varepsilon_{F.n.nom}$); область необходимого отношения $\varepsilon_s/\varepsilon_D$ в каждом из проходов; необходимая разностенность готовой трубы, ограничения по силе прокатки и пр. [3].

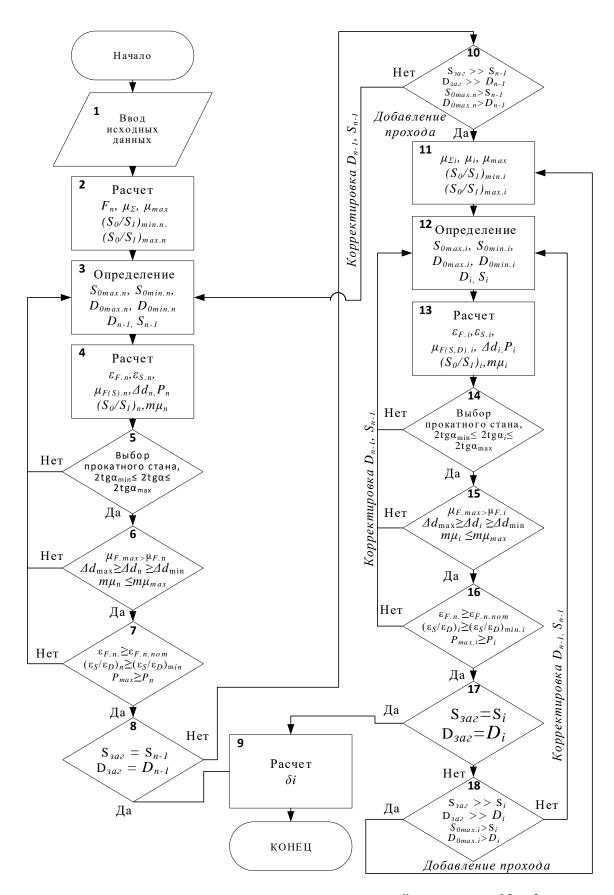


Рисунок 1. – Алгоритм расчета маршрута холодной прокатки труб [1, 3]

Расчет ведется против хода прокатки (см. рисунок 1) Определяют сечения трубы для каждого прохода F_n , геометрические параметры трубы для каждого прохода (S_n и D_n). Рассчитывают конусность оправки по проходам $2 \log \alpha$, давление металла на валки (P_n)

и пр. [3]. Алгоритм предполагает ряд итерационных операций: выбирают тип прокатного стана (рисунок 1, поз. 5); проверяют ограничения по вытяжке и линейному смещению (рисунок 1, поз. 6); ограничения по относительному обжатию, отношению ($\varepsilon_s/\varepsilon_D$); по давлению металла на валки (рисунок 1, поз. 6-7). После ряда поверок и корректировок значений D_{0n} и S_{0n} определяют геометрию заготовки для данного прохода маршрута (рисунок 4, поз. 8) и приступают к расчёту параметров очередного прохода (если он необходим) [3].

Предложенный алгоритм расчета маршрута холодной прокатки труб, включающий в себя ряд итераций, позволяет оптимизировать маршрут прокатки по необходимым для каждого конкретного случая параметрам. Отдельные итерационные циклы могут исключаться, упрощая механизм оптимизации для отдельных марок сталей и сплавов. Метод расчета проверен при расчете ряда маршрутов прокатки труб из нержавеющих марок сталей, титановых и циркониевых сплавов. Ведется работа по реализации предложенного алгоритма в программный продукт.

ЛИТЕРАТУРА

- 1. Пилипенко, С.В. Теоретические основы холодной пильгерной прокатки труб. Новополоцк: Полоц. гос. ун-т им. Евфросинии Полоцкой, 2022. 288 с.
- 2. Томило В.А., Пилипенко С.В. Обеспечение необходимого типа микроструктуры металла титановых и циркониевых труб // Литьё и металлургия. 2022, № 1, С. 106—112. https://doi.org/10.21122/1683-6065-2022-1-106-112.
- 3. Пилипенко, С. В. Алгоритм оптимизации маршрутов холодной прокатки труб / С. В. Пилипенко // Литье и металлургия. 2024. № 3. С. 72—79. DOI 10.21122/1683-6065-2024-3-72-79.
- 4. Чечулин Ю.Б., Кондратов А.А., Орлов Г.А. Холодная прокатка труб: монография. М.: Металлургиздат, 2017. 332 с.