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Abstract: This paper is devoted to the study of the multi-dimensional integral transform with the
Fox H-function in the kernel in weighted spaces with integrable functions in the domain Rn

+ with
positive coordinates. Due to the generality of the Fox H-function, many special integral transforms
have the form studied in this paper, including operators with such kernels as generalized hypergeo-
metric functions, classical hypergeometric functions, Bessel and modified Bessel functions and so
on. Moreover, most important fractional integral operators, such as the Riemann–Liouville type, are
covered by the class under consideration. The mapping properties in Lebesgue-weighted spaces,
such as the boundedness, the range and the representations of the considered transformation, are
established. In special cases, it is applied to the specific integral transforms mentioned above. We use
a modern technique based on the extensive use of the Mellin transform and its properties. Moreover,
we generalize our own previous results from the one-dimensional case to the multi-dimensional one.
The multi-dimensional case is more complex and needs more delicate techniques.

Keywords: multi-dimensional integral transform; Fox H-function; Melling transform; weighted
space; fractional integrals and derivatives
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1. Introduction

We consider the multi-dimensional H-integral transform ([1], Formula (43)):

(H f )(x) =
∞∫

0

Hm, n
p, q

[
xt

∣∣∣∣∣ (ai, αi)1,p
(bj, βj)1,q

]
f (t)dt, x > 0; (1)

where (see [1,2], ch. 28; [3], ch. 1) x = (x1, x2, . . . , xn) ∈ Rn; t = (t1, t2, . . . , tn) ∈
Rn, Rn is the n-dimensional Euclidean space; x · t =

n
∑

n=1
xntn denotes their scalar prod-

uct; in particular, x · 1 =
n
∑

n=1
xn for 1 = (1, 1, . . . , 1). The inequality x > t means that

x1 > t1, . . . , xn > tn, and inequalities ≥, <, ≤ have similar meanings;
∞∫
0
=

∞∫
0

∞∫
0
· · ·

∞∫
0

; by

N = {1, 2, . . . }, we denote the set of natural numbers, N0 = N
⋃ {0}, Nn

0 = N0 × · · · ×N0;
k = (k1, k2, . . . , kn) ∈ Nn

0 (ki ∈ N0, i = 1, 2, . . . , n) is a multi-index with k! = k1! · · · kn!
and |k| = k1 + · · · + kn; Rn

+ = {x ∈ Rn, x > 0}; for κ = (κ1, κ2, . . . , κn) ∈ Rn
+ Dκ =

∂|κ|

(∂x1)
κ1 ···(∂xn)κn ; dt = dt1 · · · dtn; tκ = tκ1 tκ2 · · · tκn ; f (t) = f (t1, t2, . . . , tn); Cn (n ∈ N) is the

n-dimensional space of n complex numbers z = (z1, z2, · · · , zn) (zj ∈ C, j = 1, 2, · · · , n);
λ = (λ1, λ2, . . . , λn) ∈ Cn; h = (h1, h2, . . . , hn) ∈ Rn

+; d
dx = d

dx1·dx2···dxn
;
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m = (m1, m2, . . . , mn) ∈ Nn
0 and m1 = m2 = · · · = mn; n = (n1, n2, . . . , nn) ∈

Nn
0 and n1 = n2 = · · · = nn; p = (p1, p2, . . . , pn) ∈ Nn

0 and p1 = p2 = · · · = pn;
q = (q1, q2, . . . , qn) ∈ Nn

0 and q1 = q2 = · · · = qn (0 ≤ m ≤ q, 0 ≤ n ≤ p);
ai = (ai1 , ai2 , . . . , ain), 1 ≤ i ≤ p, ai1 , ai2 , . . . , ain ∈ C (i1 = 1, 2, . . . , p1; . . . ; in =

1, 2, . . . , pn);
bj = (bj1 , bj2 , . . . , bjn), 1 ≤ j ≤ q, bj1 , bj2 , . . . , bjn ∈ C (j1 = 1, 2, . . . , q1; . . . ; jn =

1, 2, . . . , qn);
αi = (αi1 , αi2 , . . . , αin), 1 ≤ i ≤ p, αi1 , αi2 , . . . , αin ∈ R+

1 (i1 = 1, 2, . . . , p1; . . . ; in =
1, 2, . . . , pn);

βj = (β j1 , β j2 , . . . , β jn), 1 ≤ j ≤ q, β j1 , β j2 , . . . , β jn ∈ R+
1 (j1 = 1, 2, . . . , q1; . . . ; jn =

1, 2, . . . , qn).
The function in the kernel of (1)

Hm, n
p, q

[
xt

∣∣∣∣∣ (ai, αi)1,p
(bj, βj)1,q

]
=

n

∏
k=1

Hmk , nk
pk , qk

[
xktk

∣∣∣∣ (aik , αik )1,pk
(bjk , β jk )1,qk

]
(2)

is the product of H-functions Hm, n
p, q [z]:

Hm,n
p, q [z] ≡ Hm,n

p,q

[
z

∣∣∣∣∣ (ai, αi)1,p

(bj, β j)1,q

]
=

1
2πi

∫
L

Hm,n
p,q (s)z

−sds, z ̸= 0, (3)

where

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai, αi)1,p

(bj, β j)1,q
|s
]
=

m
∏
j=1

Γ(bj + β js)
n
∏
i=1

Γ(1 − ai − αis)

p
∏

i=n+1
Γ(ai + αis)

q
∏

j=m+1
Γ(1 − bj − β js)

. (4)

In the representation (3), L is a specifically chosen infinite contour, and the empty products,
if any, are taken to be one.

The H-function (3) is the most general of the known special functions and includes, as
special cases, elementary functions and special functions of the hypergeometric and Bessel
type, as well as the Meyer G-function. One may find its properties, for example, in the
books by Mathai and Saxena ([4], Ch. 2); Srivastava, Gupta and Goyal ([5], ch. 1); Prud-
nikov, Brychkov and Marichev ([6], Section 8.3); Kiryakova [7]; and Kilbas and Saigo ([8],
Ch.1–Ch.4).

Due to the generality of the Fox H-function, many special integral transforms have the
form studied in this paper, including operators with such kernels as generalized hypergeo-
metric functions, classical hypergeometric functions, Bessel and modified Bessel functions
and so on. Moreover, most important fractional integral operators, such as the Riemann–
Liouville type, are covered by the class under consideration. The mapping properties in
Lebesgue-weighted spaces, such as the boundedness, the range and the representations of
the considered transformation, are established. In special cases, it is applied to the specific
integral transforms mentioned above. We use a modern technique based on the extensive
use of the Mellin transform and its properties.

Our paper is devoted to the study of the H-transform (1) in Lebesgue-type weighted
spaces Lν, 2 of functions f (x) = f (x1, x2, . . . , xn) on Rn

+, such that

∥ f ∥ν,2 = {
∫
R1
+

x2·νn−1
n {· · · {

∫
R1
+

x2·ν2·−1
2 ×

[
∫
R1
+

x2·ν1−1
1 | f (x1, . . . , xn)|2dx1]dx2} · · · }dxn}1/2 < ∞,

ν = (ν1, ν2, . . . , νn) ∈ Rn, ν1 = ν2 = · · · = νn, and 2 = (2, 2, . . . , 2).
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In this paper, we apply some our previous results to obtain mapping properties such
as the boundedness, the range and the representations for the H-transform (1).

The research results for transformation (1) generalize those obtained earlier for the
corresponding one-dimensional transformation (see [8], Ch. 3):

(H f )(x) =
∞∫

0

Hm, n
p, q

[
xt| (ai, αi)1,p

(bj, β j)1,q

]
f (t)dt, x > 0; (5)

in the space Lν, 2 of Lebesgue measurable functions f on R1
+ = (0, ∞), such that∫ ∞

0
|tν f (t)|2 dt

t
< ∞ (ν ∈ R).

The H-transform (5) generalizes many integral transforms: transforms with the Mei-
jer G-function, Laplace and Hankel transforms, transforms with Gauss hypergeometric
functions and transforms with other hypergeometric and Bessel functions in the kernels.
One may find a survey of results and a bibliography in this field for the one-dimensional
case in a monograph ([8], Sections 6–8). Note that a very important class of transforms
under consideration is the class of Buschman–Erdélyi operators; they have many impor-
tant properties and applications. The topic of this paper is also strongly connected with
transmutation theory, cf. [9].

Note that, in transmutation theory applied to differential equations, its solutions
are represented as integral transforms; in this way, solutions of perturbed differential
equations are represented via more simple solutions of unperturbed equations. Through
the results of this paper and similar ones, such a representation may also be accompanied
by norm estimates in classical functional spaces. It helps to estimate the norms of perturbed
equations and analyze their smoothness or singularity conditions, cf. [9].

2. Preliminaries

The properties of the H-function Hm, n
p, q [z] (3) depend on the following numbers ([8],

Formulas 1.1.7–1.1.15):

a∗ =
n

∑
i=1

αi −
p

∑
i=n+1

αi +
m

∑
j=1

β j −
q

∑
j=m+1

β j; ∆ =
q

∑
j=1

β j −
p

∑
i=1

αi; (6)

δ =
p

∏
i=1

α
−αi
i

q

∏
j=1

β
β j
j ; (7)

µ =
q

∑
j=1

bj −
p

∑
i=1

ai +
p − q

2
; (8)

a∗1 =
m

∑
j=1

β j −
p

∑
i=n+1

αi; a∗2 =
n

∑
i=1

αi −
q

∑
j=m+1

β j; a∗1 + a∗2 = a∗, a∗1 − a∗2 = ∆; (9)

ξ =
m

∑
j=1

bj −
q

∑
j=m+1

bj +
n

∑
i=1

ai −
p

∑
i=n+1

ai; (10)

c∗ = m + n − p + q
2

. (11)

The empty sum in (6), (8), (9), (10) and the empty product in (7), if they occur, are taken to
be zero and one, respectively.

The following assertions hold.
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Lemma 1 ([8], Lemma 1.2). For σ, t ∈ R, the following estimate holds

|Hm,n
p, q (σ + it)| ∼ C|t|∆σ+Re(µ) exp−π[|t|a∗+Im(ξ)sign(t)]/2 (|t| → ∞) (12)

uniformly in σ on any bounded interval in R, where

C = (2π)c∗ exp−c∗−∆σ−Re(µ) δσ
p

∏
i=1

α
1/2−Re(ai)
i

q

∏
j=1

β
Re(bj)−1/2
j (13)

and ξ and c∗ are defined in (10) and (11).

Theorem 1 ([8],Theorem 3.4). Let α < ζ < β and either of the conditions a∗ > 0 or a∗ = 0 and
∆ζ + Re(µ) < −1 hold. Then, for x > 0, except for x = δ when a∗ = 0 and ∆ = 0, the relation

Hm,n
p,q

[
x
∣∣∣∣ (ap, αp)

(bp, βp)

]
=

1
2πi

γ+i∞∫
γ−i∞

Hm,n
p, q

[
(ap, αp)

(bp, βp)
|t
]

x−tdt (14)

holds and the estimate

|Hm,n
p,q

[
x
∣∣∣∣ (ap, αp)

(bp, βp)

]
| ≤ Aζ x−ζ (15)

is valid, where Aζ is a positive constant depending only on ζ.

A set of bounded linear operators acting from a Banach space X into a Banach space Y
is denoted by [X, Y].

The multi-dimensional Mellin integral transform (M f )(x) of function
f (x) = f (x1, x2, . . . , xn), x = (x1, x2, . . . , xn) ∈ Rn

+, is determined by the formula

(M f )(s) =
∞∫

0

f (t)ts−1dt, Re(s) = ν, (16)

s = (s1, s2, . . . , sn) ∈ Cn. The inverse multi-dimensional Mellin transform has the form

(M−1g)(x) =
1

(2πi)n

∫ γ1+i∞

γ1−i∞
· · ·

∫ γn+i∞

γn−i∞
x−sg(s)ds, (17)

x ∈ Rn
+, γj = Re(sj) (j = 1, · · · , n). The theory of multi-dimensional integral transforma-

tions (16) and (17) can be recognized, for example, in books ([3], Ch. 1; [10,11]).
We will need the following spaces. As usual, by Lp(Rn), we understand the space of

functions f (x) = f (x1, x2, . . . , xn), for which

∥ f ∥p =

{∫
Rn

| f (x)|pdx
}1/p

< ∞, p = (p1, p2, . . . , pn), 1 ≤ p < ∞.

If p = ∞, then the space L∞(Rn) is defined as the collection of all measurable functions
with a finite norm

∥ f ∥L∞(Rn) = esssup| f (x)|,

where esssup | f (x)| is the essential supremum of the function | f (x)| [12].
We need the following properties of the Mellin transform (16).

Lemma 2 ([1], Lemma 1). Let ν = (ν1, ν2, . . . , νn) ∈ Rn, ν1 = ν2 = · · · = νn. The following
properties of the Mellin transform (16) are valid.

(a) Transformation (16) is a unitary mapping of the space Lν, 2 onto the space L2(Rn).
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(b) For f ∈ Lν, 2, the following holds

f (x) =
1

(2πi)n lim
R→∞

∫ ν1+iR

ν1−iR

∫ ν2+iR

ν2−iR
· · ·

∫ νn+iR

νn−iR
(M f )(s)x−sds, (18)

where the limit is taken in the topology of the space Lν, 2 and where

if F(ν + it) =
n
∏
i=1

Fj(νj + itj), Fj(νj + itj) ∈ L1(−R, R), j = 1, 2, . . . , n, then

∫ ν1+iR

ν1−iR

∫ ν2+iR

ν2−iR
· · ·

∫ νn+iR

νn−iR
F(s)ds = in

∫ R

−R

∫ R

−R
· · ·

∫ R

−R
F(ν + it)dt.

(c) For functions f ∈ Lν, 2 and g ∈ L1−ν, 2, the following equality holds

∞∫
0

f (x)g(x)dx =
1

(2πi)n

∫ ν+i∞

ν−i∞
(M f )(s)(Mg)(1 − s)x−sds. (19)

In [1], we consider the general multi-dimensional integral transform ([1], Formula (1))

(
K f

)
(x) = hx1−(λ+1)/h d

dx
x(λ+1)/h

∞∫
0

k[xt] f (t)dt (x > 0), (20)

where the function k[xt] in the kernel of (20) is the product of one type of special function:

k[xt] = k[x1t1] · k[x2t2] · · · k[xntn].

Transformation (20) satisfies the following theorem.

Theorem 2 ([1], Theorem 1). Let ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = · · · = νn),
h = (h1, h2, . . . , hn) ∈ Rn

+, and λ = (λ1, λ2, . . . , λn) ∈ Cn.
(a) If the transformation operator (20) satisfies the condition K ∈ [Lν,2,L1−ν,2], then the kernel

on the right side of (20) k ∈ L1−ν,2. If we set, for νj ̸= 1 − (Re(λj) + 1)/hj, j = 1, 2, . . . , n,

(Mk)(1 − ν + it) =
θ(t)

λ + 1 − (1 − ν + it)h

=
n

∏
j=1

θ(tj)

λj + 1 − (1 − νj + itj)hj
(21)

almost everywhere, then function θ ∈ L∞(Rn), and, for f ∈ Lν,2, the relation

(MK f )(1 − ν + it) = θ(t)(M f )(ν − it) (22)

holds almost everywhere.
(b) Conversely, for a given function θ ∈ L∞(Rn), there is a transform K ∈ [Lν,2,L1−ν,2] so

that the equality (22) holds for f ∈ Lν,2. Moreover, if νj ̸= 1 − (Re(λj) + 1)/hj, j = 1, 2, . . . , n,
then transformation K f (20) is representable in the form (20) with the kernel k defined by (21).

(c) Based on statement (a) or (b) with θ ̸= 0, K is a one-to-one transformation from the space
Lν,2 into the space L1−ν,2, and if, in addition, 1/θ ∈ L∞(Rn), then K maps Lν,2 onto L1−ν,2,
and, for functions f , g ∈ Lν,2, the relation

∞∫
0

f (x)(Kg)(x)dx =

∞∫
0

(K f )(x)g(x)dx (23)
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is valid.

3. Lν,2-Theory for the Multi-Dimensional H-Transform

To formulate the results for the transform H f (1), we need the following constants
([1]), which are analogous for the one-dimensional case defined via the parameters of the
H-function (3) ([8], (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10)).

Let α̃ = (α̃1, α̃2, . . . , α̃n) and β̃ = (β̃1, β̃2, . . . , β̃n), where

α̃1 =

{
− min

1≤j1≤m1

[Re(bj1
)

β j1

]
, m1 > 0,

−∞, m1 = 0,
β̃1 =

{
min

1≤i1≤n1

[ 1−Re(ai1
)

αi1

]
, n1 > 0,

∞, n1 = 0,

α̃2 =

{
− min

1≤j2≤m2

[Re(bj2 )

β j2

]
, m2 > 0,

−∞, m2 = 0,
β̃2 =

{
min

1≤i2≤n2

[ 1−Re(ai2 )

αi2

]
, n2 > 0,

∞, n2 = 0,

and

α̃n =

{
− min

1≤jn≤mn

[
Re(bjn )

β jn

]
, mn > 0,

−∞, m2 = 0,
β̃n =

{
min

1≤in≤nn

[
1−Re(ain )

αin

]
, nn > 0,

∞, nn = 0;
(24)

and let a∗ = (a∗1 , a∗2 , . . . , a∗n), ∆ = (∆1, ∆2, . . . , ∆n) and

a∗1 =
n1

∑
i=1

αi1 −
p1

∑
i=n1+1

αi1 +
m1

∑
j=1

β j1 −
q1

∑
j=m1+1

β j1 , ∆1 =
q1

∑
j=1

β j1 −
p1

∑
i=1

αi1 ,

a∗2 =
n2

∑
i=1

αi2 −
p2

∑
i=n2+1

αi2 +
m2

∑
j=1

β j2 −
q2

∑
j=m1+1

β j2 , ∆2 =
q2

∑
j=1

β j2 −
p2

∑
i=1

αi2 ,

and

a∗n =
nn

∑
i=1

αin −
pn

∑
i=nn+1

αin +
mn

∑
j=1

β jn −
qn

∑
j=mn+1

β jn ; ∆n =
qn

∑
j=1

β jn −
pn

∑
i=1

αin ; (25)

and let µ = (µ1, µ2, . . . , µn) and

µ1 =
q1

∑
j=1

bj1 −
p1

∑
i=1

ai1 +
p1 − q1

2
, µ2 =

q2

∑
j=1

bj2 −
p2

∑
i=1

ai2 +
p2 − q2

2
, . . . ,

µn =
qn

∑
j=1

bjn −
pn

∑
i=1

ain +
pn − qn

2
; (26)

The exceptional set EH of a function Hm,n
p,q (s)

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai, αi)1,p

(bj, βj)1,q

∣∣∣∣∣s
]
=

n

∏
k=1

Hmk ,nk
pk , qk

[
(aik , αik )1,pk

(bjk , β jk )1,qk

∣∣∣∣∣s
]

, (27)

is called a set of vectors ν = (ν1, ν2, . . . , νn) ∈ Rn (ν1 = ν2 = · · · = νn), such that
α̃k < 1 − νk < β̃k, k = 1, 2, . . . n, where the parameters α̃k, β̃k(k = 1, 2, . . . , n) are defined by
Formula (24), and functions Hmk ,nk

pk , qk (sk) (k = 1, 2, . . . , n) of the view (4) have zeros on lines
Re(sk) < 1 − νk (k = 1, 2, . . . , n), respectively.

Applying the multi-dimensional Mellin transformation (16) to (1), formally, we obtain

(MH f )(s) = Hm,n
p,q

[
(ai, αi)1,p

(bj, β j)1,q
|s
]
(M f )(1 − s). (28)
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Theorem 3. Suppose that

α̃k < 1 − νk < β̃k; νk = νl , k ̸= l (k, l = 1, 2, . . . , n); (29)

and that either of the conditions

a∗k > 0 (k = 1, 2, . . . , n); (30)

or
a∗k = 0, ∆k[1 − νk] + Re(µk) ≤ 0 (k = 1, 2, . . . , n) (31)

holds. Then, we have the following results.
(a) There exists a one-to-one transform H ∈ [Lν,2, L1−ν,2] so that the relation (28) holds for

Re(s) = 1 − ν and f ∈ Lν,2.
If a∗k = 0, ∆k[1− νk] +Re(µk) = 0 (k = 1, 2, . . . , n), and ν does not belong to an exceptional

set EH, then the operator H maps Lν,2 onto L1−ν,2.
(b) If f ∈ Lν,2 and g ∈ Lν,2, then, for H, we have the relation (23)

∞∫
0

f (x)
(
Hg

)
(x)dx =

∞∫
0

(
H f

)
(x)g(x)dx. (32)

(c) Let f ∈ Lν,2, λ = (λ1, λ2, . . . , λn) ∈ Cn , h = (h1, h2, . . . , hn) ∈ Rn
+. If Re(λ) >

(1 − ν)h − 1, then H f is given by the formula(
H f

)
(x) = hx1−(λ+1)/h

× d
dx

x(λ+1)/h
∞∫

0

Hm,n+1
p+1,q+1

[
xt

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ − 1, h)

]
f (t)dt. (33)

When Re(λ) < (1 − ν)h − 1, H f is given by(
H f

)
(x) = −hx1−(λ+1)/h

× d
dx

x(λ+1)/h
∞∫

0

Hm+1,n
p+1,q+1

[
xt

∣∣∣∣∣ (ai, αi)1,p, (−λ, h)

(−λ − 1, h), (bj, β j)1,q

]
f (t)dt. (34)

(d) The transform H is independent of ν in the sense that, for ν and ν̃ satisfying the
assumptions (29), and either (30) or (31), and for the respective transforms H on Lν,2 and H̃
on Lν̃,2 given in (28), then H f = H̃ f for f ∈ Lν,2

⋂
Lν̃,2.

Proof. Let ω(t) = H(1 − ν + it)=
n
∏

k=1
H(1 − νk + itk). By virtue of (4), (24), and the

conditions (29), the functions Hm1,n1
p1, q1 (s1), Hm2,n2

p2, q2 (s2), . . . ,Hmn ,nn
pn , qn (sn) are analytic in the strips

α̃1 < 1 − ν1 < β̃1, . . . , α̃n < 1 − νn < β̃n, ν1 = ν2 = · · · = νn, respectively. In accordance
with (12) and conditions (30) or (31), ω(t) = O(1) as |t| → ∞. Therefore, ω ∈ L∞(Rn),
and hence we obtain from Theorem 2 (b) that there exists a transform H ∈[Lν, 2,L1−ν, 2]
such that

(MH f )(s)(1 − ν + it) = H(1 − ν + it)(M f )(ν − it)

for f ∈ Lν, 2. This means that the equality (28) holds when condition Re(s) = 1 − ν is

met. Since the functions Hm1,n1
p1, q1 (s1), Hm2,n2

p2, q2 (s2), . . . ,Hmn ,nn
pn , qn (sn) are analytic in the strips

α̃1 < 1 − ν1 < β̃1, . . . , α̃n < 1 − νn < β̃n, ν1 = ν2 = · · · = νn, respectively, and have
isolated zeros, then ω(t) ̸= 0 almost everywhere. Thus, it follows from Theorem 2 (c)
that H ∈ [Lν, 2,L1−ν, 2] is a one-to-one transform. If a∗k = 0, ∆k(1 − νk) + Re(µk) = 0
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(k = 1, 2, . . . n) and ν is not in the exceptional set EH of H, then 1/ω ∈ L∞(Rn), and, from
Theorem 2 (c), we have that H transforms the space Lν, 2 onto L1−ν, 2. This completes the
proof of the statement (a) of the theorem.

According to the statement of the Theorem 2 (c), if f ∈ Lν, 2 and g ∈ Lν, 2, then the
relation (32) is valid. Thus, the assertion (b) is true.

Let us prove the validity of the representation (33). Suppose that f ∈ Lν, 2 and
Re(λ) > (1 − ν)h − 1. To show the relation (33), it is sufficient to calculate the kernel k in
the transform (20) for such λ. From (21), we obtain the equality

(Mk)(1 − ν + it) = H(1 − ν + it)
1

λ + 1 − (1 − ν + it)h

=
n

∏
k=1

H(1 − νk + itk)
1

λk + 1 − (1 − νk + itk)hk

or, for Re(s) = 1 − ν,

(Mk)(s) = H(s)
1

λ + 1 − hs
=

n

∏
k=1

H(sk)
1

λk + 1 − hksk
. (35)

Then, from (18) and (35), we obtain the expression for the kernel k

k(x) =
n

∏
k=1

k(xk) =
1

(2πi)n

n

∏
k=1

lim
R→∞

∫ 1−νk+iR

1−νk−iR
(Mk)(sk)x−sk

k dsk

=
1

(2πi)n

n

∏
k=1

lim
R→∞

∫ 1−νk+iR

1−νk−iR
Hk(sk)

1
λk + 1 − hksk

x−sk
k dsk, (36)

where the limits are taken in the topology of Lν,2.
According to (4) and (27), we have

H(s)
1

λ + 1 − hs
= H(s)

Γ(1 − (−λ)− hs)
Γ(1 − (−λ − 1)− hs)

= Hm,n+1
p+1, q+1

[
(−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ − 1, h)
|s
]

=
n

∏
k=1

Hmk ,nk+1
pk+1, qk+1

[
(−λk, hk), (aik , αik )1,pk

(bjk , β jk )1,qk , (−λk − 1, hk)
|sk

]
. (37)

Denote by α̂k, β̂k (k = 1, 2, . . . , n) the constants α̃k, β̃k (k = 1, 2, . . . , n) in (24), respec-
tively; by ã∗k (k = 1, 2, . . . , n), the constants a∗k (k = 1, 2, . . . , n); and by ∆̃k (k = 1, 2, . . . , n),
the constants ∆k (k = 1, 2, . . . , n) in (25), respectively; and by µ̃k (k = 1, 2, . . . , n), the
constants µk (k = 1, 2, . . . , n) in (26), respectively, for Hmk ,nk+1

pk+1, qk+1 (k = 1, 2, . . . , n) in (37).

Then, α̂k = α̃k (k = 1, 2, . . . , n); β̂k = min[β̃k, (1 + Re(λk))/hk] (k = 1, 2, . . . , n); ã∗k = a∗k
(k = 1, 2, . . . , n); ∆̃k = ∆k (k = 1, 2, . . . , n); µ̃k = µk − 1 (k = 1, 2, . . . , n). Thus, it fol-
lows that

(a′) α̂k < 1 − νk < β̂i (k = 1, 2, . . . , n);
from Re(λ) > (1 − ν)h − 1, and either of the conditions
(b′) ã∗k > 0 (k = 1, 2, . . . , n);
(c′) ã∗k = 0 (k = 1, 2, . . . , n); or
∆̃k(1 − νk) + Re(µ̃k) = ∆k(1 − νk) + Re(µk)− 1 ≤ −1
(k = 1, 2, . . . , n) holds. Applying Theorem 1 for x > 0, then the equality
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Hm,n+1
p+1,q+1

[
xt

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ − 1, h)

]

=
n

∏
k=1

Hmk ,nk+1
pk+1, qk+1

[
xk

∣∣∣∣∣ (−λk, hk), (aik , αik )1,pk

(bjk , β jk )1,qk , (−λk − 1, hk)

]

=
1

(2πi)n

n

∏
k=1

lim
R→∞

∫ 1−νk+iR

1−νk−iR
Hk(sk)

1
λk + 1 − hksk

x−sk
k dsk (38)

holds almost everywhere. Then, (36) and (38) lead to the fact that the kernel k is given by

k(x) = Hm,n+1
p+1,q+1

[
x

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, β j)1,q, (−λ − 1, h)

]
,

and (33) is proven.
The representation (34) is proven similarly to (33). We use the equality

H(s)
1

λ + 1 − hs
= −H(s)

Γ(hs − λ − 1)
Γ(hs − λ)

= −Hm+1,n
p+1, q+1

[
(ai, αi)1,p, (−λ, h)

(−λ − 1, h), (bj, β j)1,q
|s
]

= −
n

∏
k=1

Hmk+1,nk
pk+1, qk+1

[
(aik , αik )1,pk , (−λk, hk)

(−λk − 1, hk), (bjk , β jk )1,qk

|sk

]
. (39)

instead of (37). Thus, the statement (c) is proven.

Let us prove (d). If f ∈ Lν, 2
⋂
Lν̃, 2 and Re(λ) > max[(1 − ν)h − 1, (1 − ν̃)h − 1] or

Re(λ) < min[(1 − ν)h − 1, (1 − ν̃)h − 1], then both transforms H f and H̃ f are given in (33)
or (34), respectively, which shows that they are independent of ν.

Corollary 1. Suppose that α̃k < β̃k (k = 1, 2, . . . , n), and that one of the following conditions holds:
(a) a∗k > 0 (k = 1, 2, . . . , n);
(b) a∗k = 0 (k = 1, 2, . . . , n); ∆k > 0 (k = 1, 2, . . . , n); and

α̃k < −Re(µk)
∆k

(k = 1, 2, . . . , n);
(c) a∗k = 0; ∆k < 0 (k = 1, 2, . . . , n); and

β̃k > −Re(µk)
∆k

(k = 1, 2, . . . , n);
(d) a∗k = 0 (k = 1, 2, . . . , n); ∆k = 0, (k = 1, 2, . . . , n); and
Re(µk) ≤ 0 (k = 1, 2, . . . , n).
Then the H-transform (1) can be defined on Lν, 2 with
α̃k < νk < βk (k = 1, 2, . . . , n); ν1 = ν2 = · · · = νn.

Proof. When 1 − β̃k < νk < 1 − α̃k (k = 1, 2, . . . , n), by Theorem 3, if either a∗k > 0
(k = 1, 2, . . . , n) or a∗k = 0 (k = 1, 2, . . . , n), ∆k(1 − νk)Re(µk) ≤ 0 (k = 1, 2, . . . , n) is satis-
fied, then the H-transform can be defined on Lν, 2, which is also valid when α̃k < νk < β̃k

(k = 1, 2, . . . , n). Hence, the corollary is clear in cases (a) and (d). When ∆k > 0 and α̃k < −Re(µk)
∆k

(k = 1, 2, . . . , n), the assumption α̃k < β̃k (k = 1, 2, . . . , n) yields that there exists a vector
ν = (ν1, ν2, . . . , νn) such that α̃k < 1− νk ≤ −Re(µk)

∆k
(k = 1, 2, . . . , n), and αk < 1− νk ≤ −Re(µk)

∆k
(k = 1, 2, . . . , n), which are required. For the case (c), the situation is similar, i.e., there exists ν

of the forms β̃k > 1− νk ≥ −Re(µk)
∆k

(k = 1, 2, . . . , n) and α̃k < 1− νk (k = 1, 2, . . . , n). Thus, the
proof is completed.
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4. Conclusions

The multi-dimensional integral transformation with the Fox H-function is studied.
Conditions are obtained for the boundedness and one-to-oneness of the operator of such a
transformation from one Lebesgue-type weighted space of functions to another, and the
analogues of the formula for integration by parts are proven. For the transformation under
consideration, various integral representations are established. The results generalize those
obtained earlier for the corresponding one-dimensional integral transform.

Due to the generality of the Fox H-function, many special integral transforms have the
form studied in this paper, including operators with such kernels as generalized hypergeo-
metric functions, classical hypergeometric functions, Bessel and modified Bessel functions
and so on. Moreover, most important fractional integral operators, such as the Riemann–
Liouville type, are covered by the class under consideration. The mapping properties in
Lebesgue-weighted spaces, such as the boundedness, the range and the representations of
the considered transformation, are established. In special cases, it is applied to the specific
integral transforms mentioned above. We use a modern technique based on the extensive
use of the Mellin transform and its properties. Moreover, we generalize our own previous
results from the one-dimensional case to the multi-dimensional one. The multi-dimensional
case is more complex and needs more delicate techniques.
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