Секния 2

ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ. ПРОИЗВОДСТВЕННАЯ ЭКОЛОГИЯ

СПОСОБ РАЦИОНАЛЬНОГО ИСПОЛЬЗОВАНИЯ НЕФТЯНЫХ ШЛАМОВ В ПРОИЗВОДСТВЕ БИТУМНЫХ МАТЕРИАЛОВ

Булавка $W.A.^{1}$, канд. тех. наук, доцент, Беляй $T.J.^{1}$, Стельмах $E.A.^{2}$

¹Полоцкий государственный университет имени Евфросинии Полоцкой, ²ОАО «Нафтан»

В настоящее время одним из основных путей перехода к ресурсосберегающим и безотходным технологиям в промышленности является рациональное использование всех видов ресурсов и снижение их потерь при производстве. Особый интерес вызывают исследования комплексной переработки органического сырья, побочных продуктов, отходов предприятий и вторичного сырья. Побочные продукты и отходы используют в качестве заменителей компонентов (в том числе в рамках программ импортозамещения) для производства материалов или в качестве модификаторов свойств готового продукта, упрощающих и удешевляющих технологии их получения.

В производствах сульфонатных присадок к смазочным маслам образуется тысячи тонн шлама, представляющего собой мелкодисперсную систему с плотностью 920...1200 кг/м³ от светло-коричневого до черного цвета, содержащую присадку (до 30% масс.), сульфат кальция (до 30% масс.), карбонат кальция (до 40% масс.), гидроксид кальция (до 3% масс.) и воду (остальное). Только на трех нефтеперерабатывающих заводах (Новокуйбышевском, Уфимском и Омском) шлам образуется в объемах более 50 тыс. т/год и является многотоннажным отходом, представляющим опасность для окружающей среды.

Нефтяные битумы остаются основным видом вяжущих материалов, применяемых в дорожном строительстве [1-4]. Повышение технического уровня современных транспортных средств, рост дорожных сетей в районах с резкими колебаниями температур обусловливают необходимость увеличения объема производства дорожных битумов и улучшения их эксплуатационных характеристик. Однако внедрение на нефтеперерабатывающих предприятиях процессов, направленных на углубление переработки нефти, приводит к резкому ухудшению группового состава нефтяных остатков, используемых в качестве сырья для процессов получения дорожных вяжущих. С этой целью была разработана композиция битумного вяжущего на основе дорожного битума и модификатора из нефтехимических отходов, отличающуюся использованием более дешевых и доступных компонентов по сравнению с промышленно производимыми аналогами. В качестве компонентов для модифицирования использовали шлам производства сульфонатной присадки ООО «ЭддиТек» (далее – шлам) и низкомолекулярный полиэтилен завода «Полимир» ОАО «Нафтан» (далее – НМПЭ). В качестве основы для модифицирования применяли дорожный битум марки БНД 50/70 OAO «Нафтан». Результаты модифицирования битумных вяжущих отходами нефтехимии приведены в таблице 1.

В результате исследования установлено, что совместное влияние компонентов предлагаемой комбинированной добавки на структуру битумного вяжущего позволяет повысить его теплостойкость и пластичность при допустимой адгезии к поверхностям минеральных материалов, что позволяет прогнозировать достаточное качество дорожного покрытия. В целом, результаты проведенных исследований позволили установить, что для

промышленной реализации возможно вовлечение до 3% масс. комбинированной добавки, состоящей из 2 частей НМПЭ и 1 части шлама сульфонатной присадки. Исследуемые отходы нефтехимии являются перспективными модификаторами получения битумных вяжущих.

Исследования выполнены в рамках гранта Министерством образования Республики Беларусь на 2024: «Разработка способа рационального использования нефтяных шламов в производстве битумных материалов» (номер государственной регистрации 20240725 от 26.04.2024.)

Таблица 1 – Результаты модифицирования битумных вяжущих отходами нефтехимии

таолица т – гезультаті	и моди	фицирования					•	
Основные показатели	Норма	Фактическое значение для БНД 50/70	Модифицированный битум БНД 50/70					
			1 ч. масс. НМПЭ : 1 ч.			2 ч. масс. НМПЭ : 1ч. масс.		
			масс. шлама			шлама		
			1% масс.	3% масс.	5% масс.	1% масс.	3% масс.	5% масс.
Глубина проникания иглы, 0,1 мм при 25 °C по ГОСТ EN 1426	50- 70	49	45	44	43	54	56	59
Температура размягчения по методу «Кольцо и шар», °С по ГОСТ EN 1426	46,54	47	47	48	50	48	50	52
Растяжимость, см, при 0 °C по ГОСТ 11505	>3,5	7	6,1	5,8	5,7	4,8	4,5	4,3
Температура хрупкости,°С по ГОСТ EN 12593	<-8	- 7	- 7	- 7	- 8	- 8	- 9	- 9
Интервал пластичности	-	54	54	55	58	56	59	61
Индекс пенетрации по СТБ EN 12591	-1,5 до + 0,7	1,06	1,19	1,10	0,89	0,79	0,49	0,17
Стойкость к затвердеванию при 163 °C по ГОСТ EN 12607-1:								
– изменение								
температуры размягчения, °С	< 7	1,0	1,0	1,0	0,9	0,5	1,0	1,35
– изменение массы, %	< 0,6	0	0	0	0	0,01	0,02	0,01

ЛИТЕРАТУРА

- 1. Булавка, Ю. А., Гришанин, К. А., Слепенков, В. С., Стельмах, Е. А. (2023). Модифицирование битумных вяжущих отходами нефтехимии. Вестник Полоцкого государственного университета. Серия В. Промышленность. Прикладные науки, (2), 75-79. doi.org/10.52928/2070-1616-2023-48-2-75-79
- 2. Анализ физико-химических свойсв шламов, образующихся при синтезе моюще-диспергирующих присадок сульфонатного типа /Е. А. Стельмах, Т. Л. Беляй, Ю. А. Булавка//Электронный сборник трудов молодых специалистов Полоцкого государственного университета имени Евфросинии Полоцкой [Электронный ресурс]. Новополоцк : Полоцкий государственный университет имени Евфросинии Полоцкой, 2023. Вып. 50(120). Промышленность. С. 127-130.
- 3. Переработка отходов теплоэнергетики в битумные материалы /Ю.А. Булавка, А.С. Юшкевич // Энергетика и энергосбережение: теория и практика. сборник материалов VII Международной научно-практической конференции. Кемерово, 2023. С. 111-1-111-6.
- 4. Получение нефтепродуктов из отработанных автомобильных шин / А.В. Мелешко, Ю.А. Булавка // Актуальные проблемы недропользования. Сборник тезисов

XVIII Межд. форума «Актуальные проблемы недропользования» 15-21 мая 2022 г.. Санкт-Петербургский горный университет, 2022. Том 1.-С.256-258.