УДК 622.692.4

ОЦЕНКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ РАСПРЕДЕЛИТЕЛЬНЫХ ГАЗОПРОВОДОВ С УЧЕТОМ КОРРОЗИОННОЙ АКТИВНОСТИ ГРУНТОВ

Т. ТИХТЯРЕНКО, И. ОРЕХОВ (Представлено: В.В. Бердашкевич)

Рассмотрены современные подходы к оценке технического состояния распределительных газопроводов с учетом коррозионной активности грунтов. Приведены основные критерии оценки надежности и методика расчета интегрального индекса состояния. Отмечено значение цифровизации, геоинформационных технологий и методов искусственного интеллекта в повышении эффективности анализа и планирования ремонтов газораспределительных сетей.

Техническое состояние распределительных газопроводов напрямую зависит от характеристик среды их залегания. Одним из основных факторов, определяющих долговечность и надежность стальных труб, является коррозионная активность грунтов [1]. В условиях старения газораспределительных сетей Республики Беларусь и ограниченных ресурсов на их замену особую актуальность приобретает задача рациональной приоритизации ремонтов с учетом объективной оценки технического состояния [2]. Для решения подобных задач в мировой практике разработаны современные методы анализа и прогнозирования технического состояния распределительных сетей.

В мировой практике оценка технического состояния распределительных газопроводов развивается в направлении интеграции геоинформационных систем (ГИС) и технологий машинного обучения [3]. В США и странах ЕС реализуются программы управления целостностью (Integrity Management Programs) [3], предусматривающие оценку рисков на основе анализа данных о коррозионной активности, дефектах изолящии и внешних воздействиях. Подобные подходы позволяют переходить от периодических обследований к прогнозированию состояния в режиме реального времени, что существенно снижает вероятность аварий и утечек.

Оценка технического состояния подземных газопроводов осуществляется с учетом физико-химических свойств грунтов, конструктивных характеристик труб, состояния изоляционного покрытия и эффективности электрохимической защиты [1]. Для получения достоверных данных о фактическом состоянии газопроводов применяются различные методы контроля. К ним относятся потенциометрические измерения, оценка потенциалов смещения, контроль эффективности катодной защиты и визуально-инструментальные обследования вскрытых участков. В последние годы в Республике Беларусь активно используются приборы для измерения поляризационного потенциала и регистрации блуждающих токов, что позволяет выявлять дефектные зоны без проведения земляных работ.

На основании результатов обследований формируются электронные паспорта участков сети, содержащие информацию о годе прокладки, типе изоляции, параметрах электрохимической защиты и данных о коррозионной активности грунтов. Такая база данных служит основой для построения математических моделей деградации трубопроводов и формирования планов ремонтов.

В нормативной базе Республики Беларусь основу составляют ГОСТ 9.602–2016 «ЕСЗКС. Сооружения подземные. Общие требования к защите от коррозии» [4] и СТБ 1034–2013 «Грунты. Методы определения удельного электрического сопротивления» [5].

Ключевым параметром является удельное электрическое сопротивление ρ [5]. При ρ < 50 Ом·м среда считается сильноагрессивной, что требует применения усиленной защиты [1; 4]. Надежность распределительных газопроводов определяется совокупностью факторов (таблица. 1).

Таблица 1. – Основные критерии оценки технического состояния

Критерий	Влияние на надежность	Пример оценки (баллы)
Возраст и материал трубы	Снижение прочности, дефекты сварки	0–3
Изоляционное покрытие	Потеря адгезии, растрескивание	0–3
Эффективность ЭХЗ	Защита от электрохимической коррозии	0–2
Уровень грунтовых вод	Повышение электролитической активности	0–2
Коррозионная активность грунта	Ускоренное разрушение металла	0–4
Плотность застройки	Категория последствий отказа	0–2

Для комплексной оценки предлагается интегральный индекс состояния $I_{\rm TC}$, определяемый по выражению:

$$I_{\text{TC}} = \sum_{i=1}^{n} w_i x_i$$

где x_i — нормированные значения критериев оценки (например, возраст трубы, состояние покрытия, эффективность ЭХЗ и т.д.);

 w_i — весовые коэффициенты, отражающие относительную значимость каждого критерия; $\sum w_i = 1$.

Интегральный индекс позволяет перевести многопараметрическую задачу оценки состояния в единую количественную форму, удобную для сопоставления участков сети. На основе рассчитанных значений выделяются три категории риска:

- 1. I (низкий риск) $(I_{TC} > 0.7)$;
- 2. II (средний риск) $(0.4 \le I_{TC} \le 0.7)$;
- 3. III (высокий риск) $(I_{TC} < 0.4)$.

Весовые коэффициенты w_i могут определяться экспертным методом, с использованием анализа иерархий (АНР) или на основе статистических данных о доле отказов, вызванных конкретными факторами [2]. Например, для газопроводов, эксплуатируемых более 30 лет, весовой коэффициент возрастного критерия может достигать 0,25, в то время как для новых участков он снижается до 0,1.

В качестве примера: при нормированных значениях факторов x_i = [0,6; 0,8; 0,7; 0,5; 0,4; 0,9] и весах w_i = [0,15; 0,2; 0,15; 0,1; 0,25; 0,15] получаем интегральный индекс I_{TC} =0,59, что соответствует категории II – средний риск. Такой результат свидетельствует о необходимости планового ремонта в среднесрочной перспективе [2].

Развитие цифровых технологий обеспечивает применение индексного подхода в сочетании с интеллектуальными методами анализа данных. В настоящее время создаются цифровые двойники распределительных сетей, объединяющие геоданные, результаты обследований и параметры коррозионной активности [2]. Использование алгоритмов машинного обучения позволяет выявлять взаимосвязи между типом грунта, влажностью и скоростью коррозии металла, что повышает точность прогнозирования ресурса трубопровода.

Зарубежная практика подтверждает эффективность подобных решений. Так, компании National Grid (Великобритания) и Enbridge (Канада) применяют платформы, интегрирующие данные инлайн-инспекций и мониторинга изоляционных дефектов [3]. Это позволяет автоматически выделять участки с повышенной вероятностью отказов и планировать профилактические мероприятия.

Для Республики Беларусь внедрение таких подходов целесообразно в рамках национальных программ цифровизации энергетического сектора. Создание единой базы данных и систем поддержки принятия решений позволит перейти от периодических обследований к прогнозному управлению техническим состоянием распределительных сетей.

Таким образом, коррозионная активность грунтов остаётся ключевым фактором, определяющим долговечность и надёжность распределительных газопроводов. Учёт этого параметра при комплексной оценке состояния обеспечивает более точное прогнозирование деградации трубопроводов и повышает обоснованность инженерных решений.

Применение индексного подхода в сочетании с цифровыми моделями и базами данных создаёт основу для построения интеллектуальных систем мониторинга, формирующих приоритеты ремонта и технического обслуживания [1; 2]. Это открывает перспективы перехода к комплексному управлению надёжностью распределительных газопроводов Республики Беларусь.

ЛИТЕРАТУРА

- 1. Григорьев, А. С. Коррозия и защита подземных металлических сооружений / А. С. Григорьев, Е. В. Шеин. М.: Недра, 2019. 312 с.
- Бердашкевич В. В. Мониторинг технического состояния системы распределительных газопроводов Республики Беларусь / В. В. Бердашкевич, И. А. Леонович // Научный журнал Российского газового общества. – 2024. – № 4(46). – С. 84–95.
- 3. ASME B31.8S-2018. Managing System Integrity of Gas Pipelines. New York: ASME, 2018. 178 p.
- 4. ГОСТ 9.602-2016. Единая система защиты от коррозии и старения. Сооружения подземные. Введ. 01.07.2017. М.: Стандартинформ, 2017. 28 с.
- 5. СТБ 1034—2013. Грунты. Методы определения удельного электрического сопротивления. Минск: Госстандарт, 2013. 16 с.