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Аннотация. Применен метод численного решения нахождения наилучшего 

приближения для обратной функции плотности распределения Шамперноуна на множестве 

ступенчатых функций  на отрезке. 

Abstract. The method of numerical solution of finding the best approximation for the inverse 

function of the Champernowne distribution density on a set of step functions on a segment is applied. 
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1. Введение 

В работе применен алгоритм нахождения наилучшего приближения обратной функции 

плотности распределения Шамперноуна на множестве кусочно-постоянных(ступенчатых) 

функций  на заданном отрезке. 

2. Квантование функции плотности распределения Шамперноуна в метрике 

квадратичного отклонения  

Определение. Пусть  . Функция называется -кусочно-постоянной 

на , если  такие что: 
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Система (2) имеет 2n-1 уравнений и 2n-1 неизвестных 
1 2 1 1 2
, ,... , , ,...

n n
B B B C C C


.  

На рисунке 1 представлен пример квантования обратной функции плотности 

распределения Шамперноуна : 
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В результате исследований полученны значения уровней для n=20(m=10 ступеней):  
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Рисунок 1 - Результат квантования: а) для m=5; б) для m=10 
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Рисунок 1 - Результат квантования: а) для m=20; б) для m=40 

Более подробно о прикладных методах оптимизации можно прочитать в работах [1]-[4] 
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В наших предыдущих работах [1-2], была описана методика извлечения 

эмульгированной нефти в магнитном поле из загрязненной воды после обработки 

водонефтяной эмульсии наночастицами магнетита. В силу высокой удельной поверхностной 

энергии, эти частицы агрегируются на границе раздела фаз вода-нефть, то есть на поверхности 

эмульсионных капель. Направленно двигаясь в неоднородном магнитном поле магнитного 

сепаратора, частицы магнетита увлекают за собой эмульсионные капли нефти, чем и 

достигается очистка загрязненной воды. Процесс агрегации магнитных наночастиц на 

поверхности капель дисперсной фазы эмульсии растянут во времени и зависит от многих 

факторов, в частности, от температуры, химического состава нефти, размера и концентрации 

твердых частиц магнетита и микрокапель эмульсии.  

В ходе экспериментальной работы [3] были проведены исследования по очистке воды, 

загрязненной нефтью Ярегского месторождения. Эксперимент показал необходимость 

обеспечения более длительного контакта магнетита с водонефтяной эмульсией для увеличения 

эффективности метода. Это обстоятельство может быть объяснено с учетом того, что 

передвижение наночастиц магнетита обусловлено броуновским движением.  

Следовательно, необходимо некоторое время для продвижения частиц магнетита к 

эмульсионным каплям. Процесс может быть ускорен интенсивным перемешиванием. Кроме 

того, сам процесс образования связей на поверхности капель нефти за счет когезионных сил 

требует определенного времени. 

Целью настоящей работы является теоретическое рассмотрение и численные оценки 

необходимого времени отстоя смеси нефтяной эмульсии с магнитными наночастицами перед 

началом процесса магнитной сепарации. 

Аналогично [4] предположим, что в сосуде объемом V находится загрязненная нефтью 

вода в виде водонефтяной эмульсии с плотностью l., содержащая эмульсионные капли радиуса 

Rb, с удельной плотностью   b, и массовой концентрацией b. Будем также считать, что там же 

находятся во взвешенном состоянии наночастицы магнетита радиуса Ra, с удельной плотностью   

a, и массовой концентрацией  a. Их коэффициент диффузии пусть будет D. Размер и масса 

наночастиц значительно меньше размеров и массы капелек эмульсии. Поэтому можно считать, 


