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Аннотация. Представлен метод нахождения наилучшего приближения плотности 

распределения Шамперноуна ступенчатыми функциями на заданном интервале. Применен 

алгоритм квантования плотности распределения Шамперноуна в пространстве функций-

ступенек на заданном отрезке.  

Abstract. A method is presented for finding the best approximation of the Champernowne 

distribution density by stepwise functions over a given interval. The algorithm of quantization of the 

Champernoune distribution density in the space of step functions on a given segment is applied. 
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1. Введение 

В работе использован алгоритм нахождения наилучшего приближения плотности 

распределения Шамперноуна ступенчатыми функциями на заданном отрезке,  в качестве 

расстояния использовалась  метрика квадратичного отклонения. 

2. Квантование функции плотности распределения Шамперноуна в метрике 

квадратичного отклонения  

Определение. Пусть  . Функция называется -кусочно-постоянной 

на , если  такие что: 

, 

. 

Для множества  ступенчатых функций (  уровней)  введем 

обозначение . 

Пусть , . Для получения минимума ошибки 

отклонения нужно в пространстве ступенчатых функций вычислить наилучшее 

Nm )(],[: baRbafm  m

[a,b]
1 2 1... mx x x    

0 1 2 1... m mx a x x x b x      

 1 1 1 1
( ) , , ( ) , ( ) , 1, 1

m i i i m i i m i i i i
f x y const x x x f x y f x y y y i m

   
         

m m )(],[: baRbafm 

],[ baSm

2:[ , ] , [ , ] , ( ) 0 [ , ]f a b f C a b f x x a b     Nm

m



 

415 
 

приближение  функции  в метрике квадратичного отклонения, такое что 

. Тогда, расстояние оценивается как: 

   (1) 

Пусть ступенчатая  функция   равна константе на отрезке ,  при 

этом функция ошибки  
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 описывает квадрат отклонения ступенчатой функции  от  функции 

распределения .  

Для n+1 ненулевой ступени  система для условия экстремума  примет  вид : 
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То есть (3) содержит 2n+1 уравнений и 2n+1 неизвестных. 

На рисунках ниже представлены примеры квантования функции плотности 

распределения Шамперноуна  
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Ниже на рисунке приведен пример работы программы для определения уровней 

приближения функции плотности Шамперноуна с 0-ым параметром лямбда для числа ступеней 

равного m=10(соответственно уровней будет 20) 
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Ниже представлены графические результаты работы программы для количества 

ступеней равного 5,10,20,40,80,160(и расстояния в среднеквадратичной метрике) 

 

 

 

Рисунок 1 - Результат для уровней квантования: а) для m=80; б) для m=160. 
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Рисунок 2 - Результат получения уровней квантования: а) для m=5; б) для m=10. 
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Рисунок 3 - Результат получения уровней квантования: а) для m=20; б) для m=40. 

Более подробно о прикладных методах оптимизации можно прочитать в работах [1]-[4]. 
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1. Введение 

В работе применен алгоритм нахождения наилучшего приближения обратной функции 

плотности распределения Шамперноуна на множестве кусочно-постоянных(ступенчатых) 

функций  на заданном отрезке. 

2. Квантование функции плотности распределения Шамперноуна в метрике 

квадратичного отклонения  

Определение. Пусть  . Функция называется -кусочно-постоянной 

на , если  такие что: 
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