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Заключение. Полученный метод расчета имеет важное практическое применение  
в области физики плазмы. Данный математический анализ может быть использован для 
моделирования электростатических полей в источниках заряженных частиц с плазмен-
ным эмиттером. С его помощью можно рассчитать распределение электрического поля  
в пространстве между электродами, оптимизировать форму и положение электродов для 
создания нужной конфигурации.  
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Компьютерное математическое моделирование является одним из результативных 

методов исследования физических процессов и явлений. Главная задача моделирова-
ния – получение информации об объекте через изучение его модели. В некоторых случа-
ях моделирование становится единственным способом изучения сложного процесса, над 
которым невозможно провести эксперимент.  

Материал и методы. Методологическую базу данной статьи составляет литерату-
ра научно-исследовательских трудов. В работе используется метод компьютерного экс-
перимента, с помощью которого рассматривается связь проектирования электродных 
систем плазменных установок с классическими основами расчетов электростатических 
полей. 

Результаты и их обсуждение. В первой части работы был представлен один  
из способов моделирования электростатических полей, создаваемых системой точечных 
зарядов. В данной работе приведены примеры расчетов, которые могут служить основой 
при моделировании электростатических полей и распределения потенциалов, создавае-
мых электродами в плазменных источниках заряженных частиц. 

Пример равномерно заряженного диска и диска с отверстием (2 тип задач), в при-
ближенном варианте соответствует форме электродов, в конструкциях плазменных ис-
точников заряженных частиц. Для определения зависимости напряженности и потенци-
ала поля от расстояния в точках, расположенных на оси диска радиусом R0, заряженного 

равномерно с поверхностной плотностью σ (рису-
нок 1), необходимо [1]: 

– выделить элементарный участок поверх-
ности диска, находящийся на расстоянии R от цен-
тра, площадь которого  

dS = RdαdR,    (1) 

(α – полярный угол); 
– по формуле  

dq = σdS = σ R dR dα   (2) 

  

 
Рисунок 1 – Определение напряженно-

сти поля на оси заряженного диска 
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определить элементарный заряд этого участка (он же считается точечным зарядом); 
– подставить (1) и (2) в формулу для нахождения напряженности поля данного то-

чечного заряда на оси диска с координатой z: 
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1
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𝑟 

𝑟
,       (3) 

где  𝑟 = √𝑅2 + 𝑧2 – расстояние от элементарного участка до точки на оси диска, в которой 
необходимо найти напряженность и потенциал. 

– разложив 𝑑𝐸⃗  на составляющие относительно оси Z, необходимо обнулить в силу 
симметрии перпендикулярные составляющие данной оси, и оставить составляющую по 
оси Z 

𝑑𝐸𝑧 = 𝑑𝐸𝑐𝑜𝑠𝛽, где 𝑐𝑜𝑠𝛽 =
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;     (4) 

– проинтегрировать полученные результаты 
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Таким образом, напряженность в точке, лежащей на оси равномерно заряженного 
диска, определяется по формуле (5). 

Заметим, что при увеличении R0 (или уменьшении расстояния z до 0), формула 
напряженности поля будет иметь вид такой же, как напряженность бесконечно заряжен-
ной пластины (т. е. напряженность поля не зависит от расстояния от плоскости). 

Из найденных значений напряженности легко найти значения потенциала электро-
статического поля, используя формулу связи данных величин: 

𝐸(𝑥) = −
𝑑𝜑

𝑑𝑥
.        (6) 

Выражение для определения потенциала поля в точке, лежащей на оси равномер-

но заряженного диска:  

𝜑 =
𝜎

2𝜀0
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2 + 𝑧2 − 𝑧).                                                             (7) 

Анализируя полученный результат, в центре диска при z=0 потенциал будет равен 
𝜎𝑅

2𝜀0
, а при росте z от заряженной поверхности, значение потенциала приближается к по-

тенциалу точечного заряда, равного заряду диска и расположенного в центре диска 
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При z << R0 (вблизи плоскости диска) потенциал равен 
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Визуализация рас-
пределения потенциала 
выполнена с помощью 
языка программирования 
Python [2] и представлена 
на рисунке 2. Для примера 
взят диск радиусом 5см с 
поверхностной плотно-
стью заряда 2нКл/м2 (ри-
сунок 1). 

В плазменных уста-
новках электроды могут 
быть как цилиндрической 
формы, так и иметь поло-

сти, которые могут быть использованы для создания локальных неоднородностей поля, 
что важно для удержания или ускорения заряженных частиц.  

 
Рисунок 2 – Визуализация распределения потенциала 
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Далее рассмотрим пример распределения потенциала в полости объемно заряжен-
ного цилиндра, что также может выступать упрощенной моделью соответствующих 
электродов в плазменных источниках заряженных частиц. 

Используя язык программирования Python, визуализируем картину распределения 
потенциала для цилиндрического тела с объемной плотностью заряда. 

Согласно закона Гаусса напряженность электрического поля внутри объемно заря-
женного цилиндра на расстоянии r от оси цилиндра определяется по формуле [2] 

𝐸 =
𝜌𝑟

2𝜀0
       (10) 

Это поле линейно возрастает с расстоянием r от оси цилиндра. 
После интегрирования и учета граничных условий получим выражение для нахож-

дения потенциала внутри отверстия цилиндра: 

𝐸(𝑟) =
𝜌(𝑅2−𝑟2)

2𝜀0
.      (11) 

Анализируя данное выражение, потенциал внутри отверстия уменьшается квадра-
тично с увеличением расстояния r от оси цилиндра. 

Наглядный пример моделирования распределения потенциала внутри отверстия 
цилиндра представлен на рисунке 3. Параметры задачи: радиус цилиндра 5см, высота 
цилиндра 1 см, радиус отверстия 3 см, объемная плотность заряда 2 нКл/м3. 

Т. о., расчет потенциала внутри 
объемно заряженного цилиндра тесно 
связан с моделированием электриче-
ских полей в плазменных установках, 
поскольку такие установки часто ис-
пользуют электроды сложной геомет-
рии для управления плазмой. 

Распределение потенциала 
внутри цилиндра (или его полости) 
определяет, как заряженные частицы 
(электроны и ионы) будут двигаться  
в плазме. В плазменных установках 
важно создавать градиенты потенци-
ала, чтобы ускорять частицы или 
удерживать их в определенной обла-
сти. Расчет потенциала внутри объем-
но заряженного цилиндра помогает 
понять, как распределение заряда 

влияет на электрическое поле и, следовательно, на движение частиц. 
Заключение. Моделирование распределения потенциалов является важным ин-

струментом для изучения процессов в плазменных установках, таких как источники за-
ряженных частиц. Оно позволяет не только визуализировать электрические поля,  
но и предсказывать поведение плазмы в различных условиях. Использование математи-
ческих моделей и численных методов помогает исследовать сложные взаимодействия 
между заряженными частицами, электрическими полями и границами системы. 
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Рисунок 3 – Распределение потенциала внутри 

отверстия цилиндра 


