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Заключение. Поскольку, в лесопромышленном комплексе на работу различных агрегатов 

влияет большое количество случайных факторов и построить детерминированные математические 

модели чаще всего невозможно, то нужно строить  и исследовать  стохастические модели.  

Использование математических моделей играет большую роль в современной экономике. 

Поэтому при преподавании высшей математики, особенно в технических и экономических уни-

верситетах, больше  внимания нужно уделять построению математических моделей, реальных 

производственных задач. Уместно вспомнить высказывание академика В.И. Арнольда, “умение 

составлять адекватные математические модели реальных ситуаций должно составлять неотъем-

лемую часть математического образования” [3.с. 28]. 
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Сегодня одной из активно развивающихся как в Республике Беларусь, так и за рубежом, 

областей математических исследований является теория управления асимптотическими харак-

теристиками (инвариантами) линейных систем обыкновенных дифференциальных уравнений 

[1]. Это связано с тем, что полученные в этой теории результаты позволяют для управляемой 

динамической системы (механической, физической, технической) строить такие управления, 

которые бы воздействовали на ее устойчивость. При этом устойчивость здесь понимается в са-

мом широком смысле – это и устойчивость по Ляпунову, и асимптотическая устойчивость, и 

равномерная асимптотическая устойчивость, и орбитальная устойчивость  и др. Все зависит 

лишь от выбора тех асимптотических инвариантов [1], подлежащих управлению, которые отве-

чают за требуемый тип устойчивости. Данная особенность рассматриваемой теории определяет 

ее прикладной характер, поскольку, результаты, получаемые в ней, могут находить непосред-

ственное применение при решении различных задач стабилизации управляемого объекта, яв-

ляющейся важной характеристикой физической или механической системы.  

В настоящее время достаточно хорошо изучены задачи управления асимптотическими 

инвариантами в лишь классе линейных систем без наблюдателя: с гладкими или кусочно-

гладкими коэффициентами (Гайшун И.В, Смирнов Е.Я., Борухов В.Т, Тонков Е.Л.), с равно-

мерно непрерывными и кусочно-постоянными коэффициентами (Тонков Е.Л, Попова С.Н., Ма-

каров Е.К., Зайцев В.А), а также во множестве линейных систем малых размерностей без 

наблюдателя с локально интегрируемыми и интегрально ограниченными коэффициентами  

(А.А. Козлов, А.Д. Бурак, И.В. Инц). Поэтому результаты данной работы, посвященные реше-

нию задачам глобального управления асимптотическими инвариантами двумерных линейных 

систем с наблюдателем, коэффициенты которых не удовлетворяют ни условиям гладкости, ни 

условиям равномерной непрерывности, являются новыми и актуальными. 

Материал и методы. В представленной работе объектом для изучения являются линей-

ные управляемые системы с разрывными и быстро осциллирующими коэффициентами и 

наблюдателем. При исследовании глобальной управляемости асимптотических инвариантов 

таких систем применяются методы матричного и функционального анализа, теории дифферен-

циальных уравнений, теории управления системами, а также теории управления асимптотиче-

скими инвариантами нестационарных систем. 

Pезультаты и их обсуждение. Обозначим через 
nR  евклидово векторное пространство 

размерности n , а через Mmn
 – пространство вещественных ( )m n -матриц со спектральной 

(операторной) нормой. Рассмотрим линейную нестационарную управляемую систему  

  = ( ) ( ) , , , 0.n mx A t x B t u x u t  R R …  (1) 
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с наблюдателем  

  = ( ) , , 0.T ky C t x y tR …  (2) 

Будем считать, что коэффициенты ( ),A   ( )B   и ( )C   принадлежат классу локально инте-

грируемых по Лебегу и интегрально ограниченных матричных функций, т.е. таких, которые 

удовлетворяют соотношениям 
1 1 1

0 0 0

( ) < < , ( ) < < , ( ) < < .sup sup sup
t t t

t t t
t t t

A d a B d b C d c     
  

    
… … …

P P P P P P  

Будем далее предполагать, что  

1) система (1) является равномерно вполне управляемой, т.е. существуют такие числа 

> 0  и > 0,  что при любых 
0 0t …  и 

0

nx R  найдется измеримое и ограниченное управле-

ние 
0 0:[ , ] ,mu t t  R  при всех 

0 0[ , ]t t t    удовлетворяющее неравенству 

0( )u t x„P P P P и переводящее вектор начального состояния 
0 0( ) =x t x  системы (1) в ноль на 

этом отрезке. 

2) система (1), (2) с нулевым управлением, т.е.  

= ( ) , , 0,nx A t x x tR …                                               (3) 

= ( ) , , 0,T ky C t x y tR …                                                (4) 

обладает свойством равномерной полной наблюдаемости, т.е. найдется такое > 0,  что 

при любом 
0 0t …  всякое начальное состояние системы 

0( )x t   
nR  может быть однозначно 

определено по наблюдению (4) на 
0 0[ , ].t t   

Рассмотрим задачу о построении линейной обратной связи = ( )u U t x  в системе (1), (2), 

позволяющей управлять асимптотическими характеристиками этой системы. Для ее решения 

воспользуемся подходом, основанным на построении системы асимптотической оценки состо-

яния. Такой подход изначально был дан в работе Р. Калмана [2] для стационарных систем (1), 

(2), а затем успешно обобщен на нестационарные систем В.А. Зайцевым [3] и им же применен 

для решения задачи стабилизации линейной нестационарной управляемой системы (1), (2) с 

наблюдателем и локально интегрируемыми с квадратом матричными коэффициентами  

A, B и C. 

Построим по системе (1), (2) и выходу  асимптотический идентификатор 

 = ( ) ( )( ( ) ( ) ) ( ) , , 0,T nx A t x V t y t C t x B t u x t   R …                    (5) 

где ( )x t  – оценка состояния системы (1), (2). Возьмем  управление  в (5)  

= ( ) .u U t x                                                                    (6) 

Матричные управления ( )U   и ( )V   в системе (5) будем считать измеримыми и ограни-

ченными на положительной полуоси матричными функциями со значениями в пространствах 

Mmn
 и Mnk

 соответственно. 

Подставив управление (6) в систему (1), (2), (5), получим (2 )n -мерную линейную  

систему  

( ) ( ) ( )
= , 0.

( ) ( ) ( ) ( ) ( ) ( ) ( )T T

x xA t B t U t
t

V t C t A t B t U t V t C tx x

    
            

…         (7) 

Введем вектор отклонения ( ) ( ) ( )x t x t x t   состояния ( )x t  системы (1), (2) от оценки 

состояния ( ).x t  С помощью невырожденной замены переменных 0
=

xx E

E Ex x

    
         

 систему 

(7) приведем к системе 

( ) ( ) ( ) ( ) ( )
= ,

0 ( ) ( ) ( )T

x xA t B t U t B t U t

A t V t C tx x

     
    

    

                      (8) 
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управляя асимптотическими инвариантами которой, мы, тем самым, будем управлять и 

асимптотическими характеристиками системы (1), (2), замкнутой линейной обратной связью 

= ( )u U t x . Тогда имеет место  

Теорема.  Пусть = 2.n  Если система (1) равномерно вполне управляема, система (3), (4)  

равномерно вполне наблюдаема, то система (8) обладает свойствами 

1) глобальной управляемости верхнего центрального показателя (а, значит, она  равно-

мерно стабилизируема); 

2) глобальной управляемости характеристических показателей Ляпунова (и поэтому, 

она асимптотически устойчива); 

3) глобальной ляпуновской приводимости, т.е. для произвольной наперед заданной  

(2 )n -мерной линейной системы с локально интегрируемыми и интегрально ограниченными ко-

эффициентами найдутся такие допустимые управления ( )U   и ( ),V   что система (8) с этими 

управлениями будет асимптотически эквивалентна выбранной системе. 

Заключение. Представленные результаты позволяют свое обобщение на случай произ-

вольной размерности фазового пространства . 

Работа выполнялась в рамках проекта БРФФИ Ф16М-006. 
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Слоистые оболочки и конструкции широко используются в различных областях совре-

менной техники. Использование слоев со специальными свойствами позволяет создавать высо-
копрочные конструкции, которые обладают хорошей тепло, - электро - и звукоизоляцией, вы-
сокой стойкостью к агрессивным средам. В составе слоистой конструкции слои из высоко-
прочных материалов являются несущими и воспринимают основную часть нагрузки, а мало-
жесткие слои связывают между собой несущие и работают в основном на поперечный сдвиг.  

В работе предлагается использовать уравнения слоистых оболочек, учитывающие пара-
метры поперечных сдвигов, полученные  Э.И. Григолюком и Г.М. Куликовым[1] с использова-
нием обобщенной кинематической гипотезы Тимошенко. Для исследования свободных колеба-
ний здесь используется асимптотический метод П.Е. Товстика[2], согласно которому, благода-
ря локализации форм колебаний и форм потери устойчивости в окрестности некоторой обра-

зующей  = 0, двумерные уравнения, описывающие состояние  слоистых оболочек, можно 
свести к последовательности одномерных краевых задач.   

Целью данной работы является исследование влияния поперечных сдвигов на устойчи-
вость слоистой оболочки при комбинированном нагружении.  

Материал и методы. Рассмотрим задачу о потере устойчивости слоистой цилиндриче-

ской оболочки при комбинированном нагружении, учитывая усилие сдвига 0
12Т , внутреннее 

давление, наличие которого приводит к появлению растягивающих усилий 0
2Т  и осевые растя-

гивающие усилия 0
1Т . Обозначим    0

3
0
2

0
1

150

12
0
2

0
1 ,tt,tεЕh,T,ТТ   . Края оболочки предполага-

ются шарнирно опертыми. 

Для описания такого состояния, используем систему полубезмоментных уравнений слои-

стых оболочек[1], записанные в безразмерном виде: 


